13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toxic Side Effects of Targeted Therapies and Immunotherapies Affecting the Skin, Oral Mucosa, Hair, and Nails

      review-article
      1 , 2 ,
      American Journal of Clinical Dermatology
      Springer International Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Targeted therapies and immunotherapies are associated with a wide range of dermatologic adverse events (dAEs) resulting from common signaling pathways involved in malignant behavior and normal homeostatic functions of the epidermis and dermis. Dermatologic toxicities include damage to the skin, oral mucosa, hair, and nails. Acneiform rash is the most common dAE, observed in 25–85% of patients treated by epidermal growth factor receptor and mitogen-activated protein kinase kinase inhibitors. BRAF inhibitors mostly induce secondary skin tumors, squamous cell carcinoma and keratoacanthomas, changes in pre-existing pigmented lesions, as well as hand-foot skin reactions and maculopapular hypersensitivity-like rash. Immune checkpoint inhibitors (ICIs) most frequently induce nonspecific maculopapular rash, but also eczema-like or psoriatic lesions, lichenoid dermatitis, xerosis, and pruritus. Of the oral mucosal toxicities observed with targeted therapies, oral mucositis is the most frequent with mammalian target of rapamycin (mTOR) inhibitors, followed by stomatitis associated to multikinase angiogenesis and HER inhibitors, geographic tongue, oral hyperkeratotic lesions, lichenoid reactions, and hyperpigmentation. ICIs typically induce oral lichenoid reactions and xerostomia. Targeted therapies and endocrine therapy also commonly induce alopecia, although this is still underreported with the latter. Finally, targeted therapies may damage nail folds, with paronychia and periungual pyogenic granuloma distinct from chemotherapy-induced lesions. Mild onycholysis, brittle nails, and a slower nail growth rate may also be observed. Targeted therapies and immunotherapies often profoundly diminish patients’ quality of life, which impacts treatment outcomes. Close collaboration between dermatologists and oncologists is therefore essential.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Combined vemurafenib and cobimetinib in BRAF-mutated melanoma.

          The combined inhibition of BRAF and MEK is hypothesized to improve clinical outcomes in patients with melanoma by preventing or delaying the onset of resistance observed with BRAF inhibitors alone. This randomized phase 3 study evaluated the combination of the BRAF inhibitor vemurafenib and the MEK inhibitor cobimetinib. We randomly assigned 495 patients with previously untreated unresectable locally advanced or metastatic BRAF V600 mutation-positive melanoma to receive vemurafenib and cobimetinib (combination group) or vemurafenib and placebo (control group). The primary end point was investigator-assessed progression-free survival. The median progression-free survival was 9.9 months in the combination group and 6.2 months in the control group (hazard ratio for death or disease progression, 0.51; 95% confidence interval [CI], 0.39 to 0.68; P<0.001). The rate of complete or partial response in the combination group was 68%, as compared with 45% in the control group (P<0.001), including rates of complete response of 10% in the combination group and 4% in the control group. Progression-free survival as assessed by independent review was similar to investigator-assessed progression-free survival. Interim analyses of overall survival showed 9-month survival rates of 81% (95% CI, 75 to 87) in the combination group and 73% (95% CI, 65 to 80) in the control group. Vemurafenib and cobimetinib was associated with a nonsignificantly higher incidence of adverse events of grade 3 or higher, as compared with vemurafenib and placebo (65% vs. 59%), and there was no significant difference in the rate of study-drug discontinuation. The number of secondary cutaneous cancers decreased with the combination therapy. The addition of cobimetinib to vemurafenib was associated with a significant improvement in progression-free survival among patients with BRAF V600-mutated metastatic melanoma, at the cost of some increase in toxicity. (Funded by F. Hoffmann-La Roche/Genentech; coBRIM ClinicalTrials.gov number, NCT01689519.).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors.

              Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors. We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed. Among 21 tumor samples, 13 had RAS mutations (12 in HRAS). In a validation set of 14 samples, 8 had RAS mutations (4 in HRAS). Thus, 60% (21 of 35) of the specimens harbored RAS mutations, the most prevalent being HRAS Q61L. Increased proliferation of HRAS Q61L-mutant cell lines exposed to vemurafenib was associated with mitogen-activated protein kinase (MAPK)-pathway signaling and activation of ERK-mediated transcription. In a mouse model of HRAS Q61L-mediated skin carcinogenesis, the vemurafenib analogue PLX4720 was not an initiator or a promoter of carcinogenesis but accelerated growth of the lesions harboring HRAS mutations, and this growth was blocked by concomitant treatment with a MEK inhibitor. Mutations in RAS, particularly HRAS, are frequent in cutaneous squamous-cell carcinomas and keratoacanthomas that develop in patients treated with vemurafenib. The molecular mechanism is consistent with the paradoxical activation of MAPK signaling and leads to accelerated growth of these lesions. (Funded by Hoffmann-La Roche and others; ClinicalTrials.gov numbers, NCT00405587, NCT00949702, NCT01001299, and NCT01006980.).
                Bookmark

                Author and article information

                Contributors
                +1 646 361 6536 , lacoutuM@mskcc.org
                +33 5 31 15 51 69 , sibaud.vincent@iuct-oncopole.fr
                Journal
                Am J Clin Dermatol
                Am J Clin Dermatol
                American Journal of Clinical Dermatology
                Springer International Publishing (Cham )
                1175-0561
                1179-1888
                30 October 2018
                30 October 2018
                2018
                : 19
                : Suppl 1
                : 31-39
                Affiliations
                [1 ]ISNI 0000 0001 2171 9952, GRID grid.51462.34, Department of Dermatology, , Memorial Sloan-Kettering Cancer Center, ; New York, NY USA
                [2 ]GRID grid.488470.7, Institut Universitaire du Cancer Toulouse – Oncopole, ; 1 avenue Irène Joliot-Curie, 31059 TOULOUSE Cedex 9, France
                Article
                384
                10.1007/s40257-018-0384-3
                6244569
                30374901
                2cb266c3-1ee2-4fd4-89a8-634c01f549aa
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Categories
                Review Article
                Custom metadata
                © Springer Nature Switzerland AG 2018

                Comments

                Comment on this article