6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the advances in pharmacological therapies, only the half of depressed patients respond to currently available treatment. Thus, the need for further investigation and development of effective therapies, especially those designed for treatment-resistant depression, has been sorely needed. Although antidepressant effects of mesenchymal stem cells (MSCs) have been reported, the potential benefit of this cell therapy on treatment-resistant depression is unknown. Cell encapsulation may enhance the survival rate of grafted cells, but the therapeutic effects and mechanisms mediating encapsulation of MSCs remain unexplored. Here, we showed that encapsulation enhanced the antidepressant effects of MSCs by attenuating depressive-like behavior of Wistar Kyoto (WKY) rats, which are considered as a promising animal model of treatment-resistant depression. The implantation of encapsulated MSCs (eMSCs) into the lateral ventricle counteracted depressive-like behavior and enhanced the endogenous neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus, whereas the implantation of MSCs without encapsulation or the implantation of eMSCs into the striatum did not show such ameliorative effects. eMSCs displayed robust and stable secretion of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, fibroblast growth factor-2, and ciliary neurotrophic factor (CNTF), and the implantation of eMSCs into the lateral ventricle activated relevant pathways associated with these growth factors. Additionally, eMSCs upregulated intrinsic expression of VEGF and CNTF and their receptors. This study suggests that the implantation of eMSCs into the lateral ventricle exerted antidepressant effects likely acting via neurogenic pathways, supporting their utility for depression treatment.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Undertreatment of people with major depressive disorder in 21 countries.

          Major depressive disorder (MDD) is a leading cause of disability worldwide.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.

            Recent studies suggest that stress-induced atrophy and loss of hippocampal neurons may contribute to the pathophysiology of depression. The aim of this study was to investigate the effect of antidepressants on hippocampal neurogenesis in the adult rat, using the thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells. Our studies demonstrate that chronic antidepressant treatment significantly increases the number of BrdU-labeled cells in the dentate gyrus and hilus of the hippocampus. Administration of several different classes of antidepressant, but not non-antidepressant, agents was found to increase BrdU-labeled cell number, indicating that this is a common and selective action of antidepressants. In addition, upregulation of the number of BrdU-labeled cells is observed after chronic, but not acute, treatment, consistent with the time course for the therapeutic action of antidepressants. Additional studies demonstrated that antidepressant treatment increases the proliferation of hippocampal cells and that these new cells mature and become neurons, as determined by triple labeling for BrdU and neuronal- or glial-specific markers. These findings raise the possibility that increased cell proliferation and increased neuronal number may be a mechanism by which antidepressant treatment overcomes the stress-induced atrophy and loss of hippocampal neurons and may contribute to the therapeutic actions of antidepressant treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Forced Swim Test as a Model of Depressive-like Behavior

              The goal of the present protocol is to describe the forced swim test (FST), which is one of the most commonly used assays for the study of depressive-like behavior in rodents. The FST is based on the assumption that when placing an animal in a container filled with water, it will first make efforts to escape but eventually will exhibit immobility that may be considered to reflect a measure of behavioral despair. This test has been extensively used because it involves the exposure of the animals to stress, which was shown to have a role in the tendency for major depression. Additionally, the FST has been shown to share some of the factors that are influenced or altered by depression in humans, including changes in food consumption, sleep abnormalities and drug-withdrawal-induced anhedonia. The main advantages of this procedure are that it is relatively easy to perform and that its results are easily and quickly analyzed. Moreover, its sensitivity to a broad range of antidepressant drugs that makes it a suitable screening test is one of the most important features leading to its high predictive validity. Despite its appeal, this model has a number of disadvantages. First, the issue of chronic augmentation is problematic in this test because in real life patients need to be treated for at least several weeks before they experience any relief from their symptoms. Last, due to the aversiveness of the FST, it is important to take into account possible influences it might have on brain structure/function if brain analyses are to be carried out following this procedure.
                Bookmark

                Author and article information

                Journal
                Molecular Psychiatry
                Mol Psychiatry
                Springer Nature America, Inc
                1359-4184
                1476-5578
                August 14 2018
                Article
                10.1038/s41380-018-0208-0
                30108315
                2cc4be47-5d38-4a76-b78c-8003cbedba55
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article