9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zoonotic Implications of Onchocerca Species on Human Health

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genus Onchocerca includes several species associated with ungulates as hosts, although some have been identified in canids, felids, and humans. Onchocerca species have a wide geographical distribution, and the disease they produce, onchocerciasis, is generally seen in adult individuals because of its large prepatency period. In recent years, Onchocerca species infecting animals have been found as subcutaneous nodules or invading the ocular tissues of humans; the species involved are O. lupi, O. dewittei japonica, O. jakutensis, O. gutturosa, and O. cervicalis. These findings generally involve immature adult female worms, with no evidence of being fertile. However, a few cases with fertile O. lupi, O. dewittei japonica, and O. jakutensis worms have been identified recently in humans. These are relevant because they indicate that the parasite’s life cycle was completed in the new host—humans. In this work, we discuss the establishment of zoonotic Onchocerca infections in humans, and the possibility of these infections to produce symptoms similar to human onchocerciasis, such as dermatitis, ocular damage, and epilepsy. Zoonotic onchocerciasis is thought to be an emerging human parasitic disease, with the need to take measures such as One Health Strategies, in order to identify and control new cases in humans.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study.

          Ivermectin has been used for onchocerciasis control since 1987. Because of the long-term use of this drug and the development of resistance in other nematodes, we have assessed Onchocerca volvulus burdens, effectiveness of ivermectin as a microfilaricide, and its effect on adult female worm reproduction. For the first phase of the study, 2501 individuals in Ghana, from 19 endemic communities who had received six to 18 annual rounds of ivermectin and one ivermectin naive community, were assessed for microfilarial loads 7 days before the 2004 yearly ivermectin treatment, by means of skin snips, and 30 days after treatment to assess the ivermectin microfilaricidal action. For the second phase, skin snips were taken from 342 individuals from ten communities, who were microfilaria positive at pretreatment assessment, on days 90 and 180 after treatment, to identify the effects of ivermectin on female worm fertility, assessed by microfilaria repopulation. 487 (19%) of the 2501 participants were microfilaria positive. The microfilaria prevalence and community microfilarial load in treated communities ranged from 2.2% to 51.8%, and 0.06 microfilariae per snip to 2.85 microfilariae per snip, respectively. Despite treatment, the prevalence rate doubled between 2000 and 2005 in two communities. Microfilaria assessment 30 days after ivermectin treatment showed 100% clearance of microfilaria in more than 99% of people. At day 90 after treatment, four of ten communities had significant microfilaria repopulation, from 7.1% to 21.1% of pretreatment counts, rising to 53.9% by day 180. Ivermectin remains a potent microfilaricide. However, our results suggest that resistant adult parasite populations, which are not responding as expected to ivermectin, are emerging. A high rate of repopulation of skin with microfilariae will allow parasite transmission, possibly with ivermectin-resistant O volvulus, which could eventually lead to recrudescence of the disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution in action: climate change, biodiversity dynamics and emerging infectious disease.

            Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness.

              Parasitic filarial nematodes infect more than 200 million individuals worldwide, causing debilitating inflammatory diseases such as river blindness and lymphatic filariasis. Using a murine model for river blindness in which soluble extracts of filarial nematodes were injected into the corneal stroma, we demonstrated that the predominant inflammatory response in the cornea was due to species of endosymbiotic Wolbachia bacteria. In addition, the inflammatory response induced by these bacteria was dependent on expression of functional Toll-like receptor 4 (TLR4) on host cells.
                Bookmark

                Author and article information

                Journal
                Pathogens
                Pathogens
                pathogens
                Pathogens
                MDPI
                2076-0817
                17 September 2020
                September 2020
                : 9
                : 9
                : 761
                Affiliations
                [1 ]Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 León, Spain; mcamp@ 123456unileon.es
                [2 ]Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24071 León, Spain
                [3 ]Instituto de Salud Global de Barcelona (ISGlobal), 08036 Barcelona, Spain; javiergandasegui@ 123456gmail.com (J.G.); jose.munoz@ 123456isglobal.org (J.M.)
                [4 ]Departmento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 León, Spain; rbalf@ 123456unileon.es
                Author notes
                [* ]Correspondence: mmarva@ 123456unileon.es
                Author information
                https://orcid.org/0000-0001-5519-738X
                https://orcid.org/0000-0003-0418-6116
                https://orcid.org/0000-0002-3723-1895
                Article
                pathogens-09-00761
                10.3390/pathogens9090761
                7560048
                32957647
                2ce7ad93-25ec-4000-8c0e-b0b312fbaa4e
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 July 2020
                : 15 September 2020
                Categories
                Review

                onchocerca,zoonosis,animal species,clinical signs
                onchocerca, zoonosis, animal species, clinical signs

                Comments

                Comment on this article