77
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Isocitrate dehydrogenase ( IDH) genes 1 and 2 are frequently mutated in acute myeloid leukaemia (AML), low-grade glioma, cholangiocarcinoma (CC) and chondrosarcoma (CS). For AML, low-grade glioma and CC, mutant IDH status is associated with a DNA hypermethylation phenotype, implicating altered epigenome dynamics in the aetiology of these cancers. Here we show that the IDH variants in CS are also associated with a hypermethylation phenotype and display increased production of the oncometabolite 2-hydroxyglutarate, supporting the role of mutant IDH-produced 2-hydroxyglutarate as an inhibitor of TET-mediated DNA demethylation. Meta-analysis of the acute myeloid leukaemia, low-grade glioma, cholangiocarcinoma and CS methylation data identifies cancer-specific effectors within the retinoic acid receptor activation pathway among the hypermethylated targets. By analysing sequence motifs surrounding hypermethylated sites across the four cancer types, and using chromatin immunoprecipitation and western blotting, we identify the transcription factor EBF1 (early B-cell factor 1) as an interaction partner for TET2, suggesting a sequence-specific mechanism for regulating DNA methylation.

          Abstract

          Cancer-associated mutations in isocitrate dehydrogenase are proposed to impair TET2-dependent DNA demethylation. By comparing the methylomes of IDH-mutant cancers, the authors identify the transcription factor EBF1 as a partner of TET2, suggesting a possible means for targeting TET2 to specific DNA sequences.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MEME Suite: tools for motif discovery and searching

            The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications

              Summary: A combination of bisulfite treatment of DNA and high-throughput sequencing (BS-Seq) can capture a snapshot of a cell's epigenomic state by revealing its genome-wide cytosine methylation at single base resolution. Bismark is a flexible tool for the time-efficient analysis of BS-Seq data which performs both read mapping and methylation calling in a single convenient step. Its output discriminates between cytosines in CpG, CHG and CHH context and enables bench scientists to visualize and interpret their methylation data soon after the sequencing run is completed. Availability and implementation: Bismark is released under the GNU GPLv3+ licence. The source code is freely available from www.bioinformatics.bbsrc.ac.uk/projects/bismark/. Contact: felix.krueger@bbsrc.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                18 July 2013
                : 4
                : 2166
                Affiliations
                [1 ]Medical Genomics, UCL Cancer Institute, University College London , London, UK
                [2 ]Genetics and Cell Biology of Sarcoma, UCL Cancer Institute, University College London , London, UK
                [3 ]Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust , Middlesex, UK
                [4 ]Statistical Cancer Genomics, UCL Cancer Institute, University College London , London, UK
                [5 ]Tumour Suppressor Signalling Networks, UCL Cancer Institute, University College London , London, UK
                [6 ]Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel , Basel, Switzerland
                [7 ]Illumina Cambridge Ltd., Chesterford Research Park , Little Chesterford, UK
                Author notes
                Article
                ncomms3166
                10.1038/ncomms3166
                3759038
                23863747
                2cfcadb7-6fce-420b-ba9e-fd0a44f711f2
                Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. To view a copy of this licence visit http://creativecommons.org/licenses/by/3.0/.

                History
                : 14 February 2013
                : 18 June 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article