12
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anaplastic thyroid cancer: genome-based search for new targeted therapy options

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Anaplastic thyroid cancer (ATC) is one of the most lethal human cancers with meager treatment options. We aimed to identify the targeted drugs already approved by the Food and Drug Administration (FDA) for solid cancer in general, which could be effective in ATC.

          Design

          Database mining.

          Methods

          FDA-approved drugs for targeted therapy were identified by screening the databases of MyCancerGenome and the National Cancer Institute. Drugs were linked to the target genes by querying Drugbank. Subsequently, MyCancerGenome, CIViC, TARGET and OncoKB were mined for genetic alterations which are predicted to lead to drug sensitivity or resistance. We searched the Cancer Genome Atlas database (TCGA) for patients with ATC and probed their sequencing data for genetic alterations which predict a drug response.

          Results

          In the study,155 FDA-approved drugs with 136 potentially targetable genes were identified. Seventeen (52%) of 33 patients found in TCGA had at least one genetic alteration in targetable genes. The point mutation BRAF V600E was seen in 45% of patients. PIK3CA occurred in 18% of cases. Amplifications of ALK and SRC were detected in 3% of cases, respectively. Fifteen percent of the patients displayed a co-mutation of BRAF and PIK3CA. Besides BRAF-inhibitors, the PIK3CA-inhibitor copanlisib showed a genetically predicted response. The 146 (94%) remaining drugs showed no or low (under 4% cases) genetically predicted drug response.

          Conclusions

          While ATC carrying BRAF mutations can benefit from BRAF inhibitors and this effect might be enhanced by a combined strategy including PIK3CA inhibitors in some of the patients, alterations in BRAFWT ATC are not directly targeted by currently FDA-approved options.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.

          The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications. © 2012 AACR.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DrugBank 5.0: a major update to the DrugBank database for 2018

            Abstract DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers

              We describe methods with enhanced power and specificity to identify genes targeted by somatic copy-number alterations (SCNAs) that drive cancer growth. By separating SCNA profiles into underlying arm-level and focal alterations, we improve the estimation of background rates for each category. We additionally describe a probabilistic method for defining the boundaries of selected-for SCNA regions with user-defined confidence. Here we detail this revised computational approach, GISTIC2.0, and validate its performance in real and simulated datasets.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                11 March 2022
                01 April 2022
                : 11
                : 4
                : e210624
                Affiliations
                [1 ]Department of Nuclear Medicine , University Hospital Münster, Münster, Germany
                [2 ]European Institute for Molecular Imaging (EIMI) , University of Münster, Münster, Germany
                [3 ]Department of General , Visceral, Tumor and Transplant Surgery, University Hospital Cologne, Cologne, Germany
                [4 ]Institute of Zoology , University of Cologne Germany, Cologne, Germany
                Author notes
                Correspondence should be addressed to H Alakus: hakan.alakus@ 123456uk-koeln.de

                *(D A Hescheler and M J M Hartmann contributed equally to this work)

                Author information
                http://orcid.org/0000-0001-5620-7893
                Article
                EC-21-0624
                10.1530/EC-21-0624
                9066601
                35275096
                2d04cc86-29a7-4450-94c1-e7119f67d7c1
                © The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 14 February 2022
                : 11 March 2022
                Categories
                Research

                targeted molecular therapy,new treatment advances,human genome project,anaplastic thyroid cancer

                Comments

                Comment on this article

                Related Documents Log