23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Components of Myelin Damage and Repair in the Progression of White Matter Pathology After Mild Traumatic Brain Injury

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          White matter tracts are highly vulnerable to damage from impact-acceleration forces of traumatic brain injury (TBI). Mild TBI is characterized by a low density of traumatic axonal injury, whereas associated myelin pathology is relatively unexplored. We examined the progression of white matter pathology in mice after mild TBI with traumatic axonal injury localized in the corpus callosum. Adult mice received a closed-skull impact and were analyzed from 3 days to 6 weeks post-TBI/sham surgery. At all times post-TBI, electron microscopy revealed degenerating axons distributed among intact fibers in the corpus callosum. Intact axons exhibited significant demyelination at 3 days followed by evidence of remyelination at 1 week. Accordingly, bromodeoxyuridine pulse-chase labeling demonstrated the generation of new oligodendrocytes, identified by myelin proteolipid protein messenger RNA expression, at 3 days post-TBI. Overall oligodendrocyte populations, identified by immunohistochemical staining for CC1 and/or glutathione S-transferase pi, were similar between TBI and sham mice by 2 weeks. Excessively long myelin figures, similar to redundant myelin sheaths, were a significant feature at all post-TBI time points. At 6 weeks post-TBI, microglial activation and astrogliosis were localized to areas of axon and myelin pathology. These studies show that demyelination, remyelination, and excessive myelin are components of white matter degeneration and recovery in mild TBI with traumatic axonal injury.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Demyelination increases radial diffusivity in corpus callosum of mouse brain.

          Myelin damage, as seen in multiple sclerosis (MS) and other demyelinating diseases, impairs axonal conduction and can also be associated with axonal degeneration. Accurate assessments of these conditions may be highly beneficial in evaluating and selecting therapeutic strategies for patient management. Recently, an analytical approach examining diffusion tensor imaging (DTI) derived parameters has been proposed to assess the extent of axonal damage, demyelination, or both. The current study uses the well-characterized cuprizone model of experimental demyelination and remyelination of corpus callosum in mouse brain to evaluate the ability of DTI parameters to detect the progression of myelin degeneration and regeneration. Our results demonstrate that the extent of increased radial diffusivity reflects the severity of demyelination in corpus callosum of mouse brain affected by cuprizone treatment. Subsequently, radial diffusivity decreases with the progression of remyelination. Furthermore, radial diffusivity changes were specific to the time course of changes in myelin integrity as distinct from axonal injury, which was detected by betaAPP immunostaining and shown to be most extensive prior to demyelination. Radial diffusivity offers a specific assessment of demyelination and remyelination, as distinct from acute axonal damage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia development and function.

            Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wallerian degeneration: an emerging axon death pathway linking injury and disease.

              Axon degeneration is a prominent early feature of most neurodegenerative disorders and can also be induced directly by nerve injury in a process known as Wallerian degeneration. The discovery of genetic mutations that delay Wallerian degeneration has provided insight into mechanisms underlying axon degeneration in disease. Rapid Wallerian degeneration requires the pro-degenerative molecules SARM1 and PHR1. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is essential for axon growth and survival. Its loss from injured axons may activate Wallerian degeneration, whereas NMNAT overexpression rescues axons from degeneration. Here, we discuss the roles of these and other proposed regulators of Wallerian degeneration, new opportunities for understanding disease mechanisms and intriguing links between Wallerian degeneration, innate immunity, synaptic growth and cell death.
                Bookmark

                Author and article information

                Journal
                J Neuropathol Exp Neurol
                J. Neuropathol. Exp. Neurol
                NEN
                Journal of Neuropathology and Experimental Neurology
                American Association of Neuropathologists
                0022-3069
                1554-6578
                March 2015
                13 February 2015
                : 74
                : 3
                : 218-232
                Affiliations
                From the Department of Anatomy, Physiology, and Genetics (AJM, GMS, RCA), Center for Neuroscience and Regenerative Medicine (AJM, GMS, RCA), Program in Neuroscience (CMM, RCA), and Biomedical Instrumentation Center (DPM), Uniformed Services University of the Health Sciences, Bethesda, Maryland.
                Author notes
                Send correspondence and reprint requests to: Regina C. Armstrong, PhD, Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814; E-mail: regina.armstrong@ 123456usuhs.edu
                Article
                NEN14203 00005
                10.1097/NEN.0000000000000165
                4327393
                25668562
                2d06a5fc-23e3-49b4-aa3b-e08423d13f41
                Copyright © 2015 by the American Association of Neuropathologists, Inc.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.

                History
                Categories
                Original Articles
                Custom metadata
                TRUE

                axon damage,demyelination,neuroinflammation,oligodendrocyte,redundant myelin,remyelination,traumatic axonal injury

                Comments

                Comment on this article