18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alterations of Electrophysiological Properties and Ion Channel Expression in Prefrontal Cortex of a Mouse Model of Schizophrenia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maternal immune activation (MIA) and juvenile social isolation (SI) are two most prevalent and widely accepted environmental insults that could increase the propensity of psychiatric illnesses. Using a two-hit mouse model, we examined the impact of the combination of these two factors on animal behaviors, neuronal excitability and expressions of voltage-gated sodium (Nav) and small conductance calcium-activated potassium (SK) channels in the prefrontal cortex (PFC). We found that MIA-SI induced a number of schizophrenia-related behavioral deficits. Patch clamp recordings revealed alterations in electrophysiological properties of PFC layer-5 pyramidal cells, including hyperpolarized resting membrane potential (RMP), increased input resistance and enhanced medium after-hyperpolarization (mAHP). MIA-SI also increased the ratio of the maximal slope of somatodendritic potential to the peak slope of action potential upstroke, indicating a change in perisomatic Nav availability. Consistently, MIA-SI significantly increased the expression level of Nav1.2 and SK3 channels that contribute to the somatodendritic potential and the mAHP, respectively. Together, these changes may alter neuronal signaling in the PFC and behavioral states, representing a molecular imprint of environmental insults associated with neuropsychiatric illnesses.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Animal models of schizophrenia.

          Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble 'positive-like' symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis.

            Schizophrenia risk has often been conceptualized using a model which requires two hits in order to generate the clinical phenotype-the first as an early priming in a genetically predisposed individual and the second a likely environmental insult. The aim of this paper was to review the literature and reformulate this binary risk-vulnerability model. We sourced the data for this narrative review from the electronic database PUBMED. Our search terms were not limited by language or date of publication. The development of schizophrenia may be driven by genetic vulnerability interacting with multiple vulnerability factors including lowered prenatal vitamin D exposure, viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, nutrition and childhood trauma. It is likely that these genetic risks, environmental risks and vulnerability factors are cumulative and interactive with each other and with critical periods of neurodevelopmental vulnerability. The development of schizophrenia is likely to be more complex and nuanced than the binary two hit model originally proposed nearly thirty years ago. Risk appears influenced by a more complex process involving genetic risk interfacing with multiple potentially interacting hits and vulnerability factors occurring at key periods of neurodevelopmental activity, which culminate in the expression of disease state. These risks are common across a number of neuropsychiatric and medical disorders, which might inform common preventive and intervention strategies across non-communicable disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures.

              Variants in the SCN2A gene that disrupt the encoded neuronal sodium channel NaV1.2 are important risk factors for autism spectrum disorder (ASD), developmental delay, and infantile seizures. Variants observed in infantile seizures are predominantly missense, leading to a gain of function and increased neuronal excitability. How variants associated with ASD affect NaV1.2 function and neuronal excitability are unclear.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                17 December 2019
                2019
                : 13
                : 554
                Affiliations
                [1] 1State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University , Beijing, China
                [2] 2IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing, China
                Author notes

                Edited by: Marie-Eve Tremblay, Laval University, Canada

                Reviewed by: Darrin Brager, The University of Texas at Austin, United States; Wen-Jun Gao, Drexel University, United States

                *Correspondence: Yousheng Shu, yousheng@ 123456bnu.edu.cn

                This article was submitted to Cellular Neuropathology, a section of the journal Frontiers in Cellular Neuroscience

                Article
                10.3389/fncel.2019.00554
                6927988
                31920555
                2d0ca916-6c7f-4c50-8175-7e6cab619842
                Copyright © 2019 Mi, Yang, He, Zhang, Xiao and Shu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 September 2019
                : 02 December 2019
                Page count
                Figures: 3, Tables: 1, Equations: 1, References: 51, Pages: 11, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                schizophrenia,ion channel,neuronal excitability,action potential,prefrontal cortex,sk channel,nav channel

                Comments

                Comment on this article