74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          DNA microarrays are rapidly becoming a fundamental tool in discovery-based genomic and biomedical research. However, the reliability of the microarray results is being challenged due to the existence of different technologies and non-standard methods of data analysis and interpretation. In the absence of a "gold standard"/"reference method" for the gene expression measurements, studies evaluating and comparing the performance of various microarray platforms have often yielded subjective and conflicting conclusions. To address this issue we have conducted a large scale TaqMan ® Gene Expression Assay based real-time PCR experiment and used this data set as the reference to evaluate the performance of two representative commercial microarray platforms.

          Results

          In this study, we analyzed the gene expression profiles of three human tissues: brain, lung, liver and one universal human reference sample (UHR) using two representative commercial long-oligonucleotide microarray platforms: (1) Applied Biosystems Human Genome Survey Microarrays (based on single-color detection); (2) Agilent Whole Human Genome Oligo Microarrays (based on two-color detection). 1,375 genes represented by both microarray platforms and spanning a wide dynamic range in gene expression levels, were selected for TaqMan ® Gene Expression Assay based real-time PCR validation. For each platform, four technical replicates were performed on the same total RNA samples according to each manufacturer's standard protocols. For Agilent arrays, comparative hybridization was performed using incorporation of Cy5 for brain/lung/liver RNA and Cy3 for UHR RNA (common reference). Using the TaqMan ® Gene Expression Assay based real-time PCR data set as the reference set, the performance of the two microarray platforms was evaluated focusing on the following criteria: (1) Sensitivity and accuracy in detection of expression; (2) Fold change correlation with real-time PCR data in pair-wise tissues as well as in gene expression profiles determined across all tissues; (3) Sensitivity and accuracy in detection of differential expression.

          Conclusion

          Our study provides one of the largest "reference" data set of gene expression measurements using TaqMan ® Gene Expression Assay based real-time PCR technology. This data set allowed us to use an alternative gene expression technology to evaluate the performance of different microarray platforms. We conclude that microarrays are indeed invaluable discovery tools with acceptable reliability for genome-wide gene expression screening, though validation of putative changes in gene expression remains advisable. Our study also characterizes the limitations of microarrays; understanding these limitations will enable researchers to more effectively evaluate microarray results in a more cautious and appropriate manner.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Variance stabilization applied to microarray data calibration and to the quantification of differential expression.

          We introduce a statistical model for microarray gene expression data that comprises data calibration, the quantification of differential expression, and the quantification of measurement error. In particular, we derive a transformation h for intensity measurements, and a difference statistic Deltah whose variance is approximately constant along the whole intensity range. This forms a basis for statistical inference from microarray data, and provides a rational data pre-processing strategy for multivariate analyses. For the transformation h, the parametric form h(x)=arsinh(a+bx) is derived from a model of the variance-versus-mean dependence for microarray intensity data, using the method of variance stabilizing transformations. For large intensities, h coincides with the logarithmic transformation, and Deltah with the log-ratio. The parameters of h together with those of the calibration between experiments are estimated with a robust variant of maximum-likelihood estimation. We demonstrate our approach on data sets from different experimental platforms, including two-colour cDNA arrays and a series of Affymetrix oligonucleotide arrays.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Real-time PCR for mRNA quantitation

            Real-time PCR has become one of the most widely used methods of gene quantitation because it has a large dynamic range, boasts tremendous sensitivity, can be highly sequence-specific, has little to no post-amplification processing, and is amenable to increasing sample throughput. However, optimal benefit from these advantages requires a clear understanding of the many options available for running a real-time PCR experiment. Starting with the theory behind real-time PCR, this review discusses the key components of a real-time PCR experiment, including one-step or two-step PCR, absolute versus relative quantitation, mathematical models available for relative quantitation and amplification efficiency calculations, types of normalization or data correction, and detection chemistries. In addition, the many causes of variation as well as methods to calculate intra- and inter-assay variation are addressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Real-time PCR in virology.

              The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                2006
                21 March 2006
                : 7
                : 59
                Affiliations
                [1 ]Molecular Biology Division, Applied Biosystems, Foster City, CA 94404, USA
                Article
                1471-2164-7-59
                10.1186/1471-2164-7-59
                1435885
                16551369
                2d2ccbc7-76ae-43d7-b66c-cacf1d095c7a
                Copyright © 2006 Wang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 November 2005
                : 21 March 2006
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article