The results of an experimental investigation on the microcracking of high-performance concrete subjected to biaxial tension-compression stresses are presented. Short-term static tests and microcracking mapping were performed on 12.5 cm square by 1.25 cm thick plates. Strain controlled tests were executed in a biaxial testing machine constructed at the University of Texas. The primary variables studied were the deformations and the ultimate stress level at each stress ratio as well as the microcracking patterns and total crack lengths. For the microcracking study, the plates, after straining, were impregnated by an epoxy and then examined under a microscope. Microcracks were classified into simple and combined cracks, since this distinction allows for a much better representation of the microcracking process. A simple crack is either a bond or mortar crack where a combined crack contains both of these. For all stress ratios tested, the stress-strain behavior was directly related to the internal microcracking pattern. In all cases, the failure was directly related to the formation and propagation of the combined cracks.