36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional and health promoting inherent attributes of Enterococcus hirae F2 as a novel probiotic isolated from the digestive tract of the freshwater fish Catla catla

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Probiotic microorganisms are gaining global importance because of their use in the preparation of a nutraceutical or in the treatment of infections. As per the health industry demand, there is an urgent need for exploring new indigenous probiotic strains with its specific origin due to variation in gut microflora, different food habits and specific host-microbial interactions. The main objective of the present study was to isolate and identify a novel probiotic Enterococcus strain from the gut of Catla catla fish and evaluate its potentiality as a potent probiotic.

          Methods

          The whole study was designed with the isolation of novel lactic acid bacterial strain from the gut of Catla catla fish with their biochemical and molecular identifications. The potentiality of the isolated strain as a potent probiotic was carried out according to the parameters described in FAD/WHO guidelines for the evaluation of probiotics in food.

          Results

          The isolated strain was confirmed as Enterococcus hirae F2 on the basis of various biochemical and 16s rRNA gene sequencing methods. Enterococcus hirae F2 was able to survive under highly acidic and bile salt concentration with the ability for the production of lipase and Bsh enzyme. It was also able to survive under simulated gastrointestinal conditions with the inhibition ability of various pathogens. The antioxidant potentiality with the cell surface hydrophobicity and cell aggregation ability confirms its potentiality as a potent probiotic. All the results detail the potency of Enterococcus hirae F2 as a novel probiotic for a safer use.

          Discussion

          The isolation of Enterococcus hirae with probiotic potential from the gut of fish is a new approach and done for the first time. However, the whole study concluded that the isolated strain might be used as a novel probiotic in the food industry for the production of new probiotic products which imparts health benefits to the host.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          16S ribosomal DNA amplification for phylogenetic study.

          A set of oligonucleotide primers capable of initiating enzymatic amplification (polymerase chain reaction) on a phylogenetically and taxonomically wide range of bacteria is described along with methods for their use and examples. One pair of primers is capable of amplifying nearly full-length 16S ribosomal DNA (rDNA) from many bacterial genera; the additional primers are useful for various exceptional sequences. Methods for purification of amplified material, direct sequencing, cloning, sequencing, and transcription are outlined. An obligate intracellular parasite of bovine erythrocytes, Anaplasma marginale, is used as an example; its 16S rDNA was amplified, cloned, sequenced, and phylogenetically placed. Anaplasmas are related to the genera Rickettsia and Ehrlichia. In addition, 16S rDNAs from several species were readily amplified from material found in lyophilized ampoules from the American Type Culture Collection. By use of this method, the phylogenetic study of extremely fastidious or highly pathogenic bacterial species can be carried out without the need to culture them. In theory, any gene segment for which polymerase chain reaction primer design is possible can be derived from a readily obtainable lyophilized bacterial culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates.

            Enterococci are used as starter and probiotic cultures in foods, and they occur as natural food contaminants. The genus Enterococcus is of increased significance as a cause of nosocomial infections, and this trend is exacerbated by the development of antibiotic resistance. In this study, we investigated the incidence of known virulence determinants in starter, food, and medical strains of Enterococcus faecalis, E. faecium, and E. durans. PCR and gene probe strategies were used to screen enterococcal isolates from both food and medical sources. Different and distinct patterns of incidence of virulence determinants were found for the E. faecalis and E. faecium strains. Medical E. faecalis strains had more virulence determinants than did food strains, which, in turn, had more than did starter strains. All of the E. faecalis strains tested possessed multiple determinants (between 6 and 11). E. faecium strains were generally free of virulence determinants, with notable exceptions. Significantly, esp and gelE determinants were identified in E. faecium medical strains. These virulence determinants have not previously been identified in E. faecium strains and may result from regional differences or the evolution of pathogenic E. faecium. Phenotypic testing revealed the existence of apparently silent gelE and cyl genes. In E. faecalis, the trend in these silent genes mirrors that of the expressed determinants. The potential for starter strains to acquire virulence determinants by natural conjugation mechanisms was investigated. Transconjugation in which starter strains acquired additional virulence determinants from medical strains was demonstrated. In addition, multiple pheromone-encoding genes were identified in both food and starter strains, indicating their potential to acquire other sex pheromone plasmids. These results suggest that the use of Enterococcus spp. in foods requires careful safety evaluation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure.

              Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                15 March 2017
                2017
                : 5
                : e3085
                Affiliations
                [1 ]Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail , Hail, Saudi Arabia
                [2 ]Bapalal Vaidhya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University , Surat, Gujarat, India
                [3 ]School of Forensic and Applied Sciences, University of Central Lancashire , Preston, Lancashire, United Kingdom
                Article
                3085
                10.7717/peerj.3085
                5356477
                28316889
                2d39231a-a8a7-4093-8106-971c7f71a697
                ©2017 Adnan et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 22 November 2016
                : 11 February 2017
                Funding
                The authors received no funding for this work.
                Categories
                Food Science and Technology
                Microbiology

                enterococcus hirae,catla catla,acid tolerance,probiotic,gastrointestinal conditions

                Comments

                Comment on this article

                scite_

                Similar content67

                Cited by21

                Most referenced authors647