14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber /MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          25th anniversary article: MXenes: a new family of two-dimensional materials.

          Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2 AlC, Ti3 AlC2 , and Ta4 AlC3 . MXenes -combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as "conductive clays". This article reviews progress-both -experimental and theoretical-on their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide

            The intercalation of ions into layered compounds has long been exploited in energy storage devices such as batteries and electrochemical capacitors. However, few host materials are known for ions much larger than lithium. We demonstrate the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers. MXenes combine 2D conductive carbide layers with a hydrophilic, primarily hydroxyl-terminated surface. A variety of cations, including Na(+), K(+), NH4(+), Mg(2+), and Al(3+), can also be intercalated electrochemically, offering capacitance in excess of 300 farads per cubic centimeter (much higher than that of porous carbons). This study provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two-dimensional transition metal carbides.

              Herein we report on the synthesis of two-dimensional transition metal carbides and carbonitrides by immersing select MAX phase powders in hydrofluoric acid, HF. The MAX phases represent a large (>60 members) family of ternary, layered, machinable transition metal carbides, nitrides, and carbonitrides. Herein we present evidence for the exfoliation of the following MAX phases: Ti(2)AlC, Ta(4)AlC(3), (Ti(0.5),Nb(0.5))(2)AlC, (V(0.5),Cr(0.5))(3)AlC(2), and Ti(3)AlCN by the simple immersion of their powders, at room temperature, in HF of varying concentrations for times varying between 10 and 72 h followed by sonication. The removal of the "A" group layer from the MAX phases results in 2-D layers that we are labeling MXenes to denote the loss of the A element and emphasize their structural similarities with graphene. The sheet resistances of the MXenes were found to be comparable to multilayer graphene. Contact angle measurements with water on pressed MXene surfaces showed hydrophilic behavior.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                March 2021
                January 18 2021
                March 2021
                : 31
                : 13
                : 2008006
                Affiliations
                [1 ]Ministry of Education Key Laboratory of Materials Processing and Mold (Zhengzhou University) National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou Henan 450002 China
                [2 ]Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 China
                [3 ]College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
                Article
                10.1002/adfm.202008006
                2d490bb6-0d4f-4ff3-a144-a482d603d8b0
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article