6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      UVA-activated riboflavin promotes collagen crosslinking to prevent root caries

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Root caries is an increasingly problem in aging societies with severe implications for the general health and wellbeing of large numbers of people. Strengthening type-I collagen, a major organic component of human dentin, has proved effective in preventing root caries. This study sought to determine whether exposure to riboflavin followed by UVA irradiation (RF/UVA) could promote additional collagen crosslinking, and thus improve the acid and enzymatic resistance of human dentin under simulated oral environments. If so, it could offer potential for treatment of the intractable problem of root caries. The greatest flexural strengths were found in dentin exposed to a 0.1% riboflavin solution for 1 minute followed by 1,600 mW/cm 2 UVA irradiation for 10 minutes. Mineral loss and lesion depth were significantly lower in the RF/UVA group than in the control group. The microstructures of dentinal tubules and collagen networks after RF/UVA treatment retained their original forms after acidic and enzymatic degradation. In conclusion, RF/UVA treatment may be a new method for preventing root caries with promising prospects for clinical application.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety of UVA-riboflavin cross-linking of the cornea.

            To study potential damage to ocular tissue during corneal collagen cross-linking (X-linking) by means of the riboflavin/UVA (370 nm) approach. Comparison of the currently used technique with officially accepted guidelines regarding direct UV damage and the damage created by the induced free radicals (photochemical damage). The currently used UVA radiant exposure of 5.4 mJ/cm and the corresponding irradiance of 3 mW/cm2 is below the known damage thresholds of UVA for the corneal endothelium, lens, and retina. Regarding the photochemical damage caused by the free radicals, the damage thresholds for keratocytes and endothelial cells are 0.45 and 0.35 mW/cm, respectively. In a 400-microm-thick cornea saturated with riboflavin, the irradiance at the endothelial level was 0.18 mW/cm, which is a factor of 2 smaller than the damage threshold. After corneal X-linking, the stroma is depopulated of keratocytes approximately 300 microm deep. Repopulation of this area takes up to 6 months. As long as the cornea treated has a minimum thickness of 400 microm (as recommended), the corneal endothelium will not experience damage, nor will deeper structures such as lens and retina. The light source should provide a homogenous irradiance, avoiding hot spots.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strategies to prevent hydrolytic degradation of the hybrid layer-A review.

              Endogenous dentin collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, are responsible for the time-dependent hydrolysis of collagen matrix of hybrid layers. As collagen matrix integrity is essential for the preservation of long-term dentin bond strength, inhibition of endogenous dentin proteases is necessary for durable resin-bonded restorations.
                Bookmark

                Author and article information

                Contributors
                uemura@dent.osaka-u.ac.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 February 2019
                4 February 2019
                2019
                : 9
                : 1252
                Affiliations
                [1 ]ISNI 0000 0004 0373 3971, GRID grid.136593.b, Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, , Osaka University, ; Osaka, Japan
                [2 ]ISNI 0000 0004 0373 3971, GRID grid.136593.b, Division for Interdisciplinary Dentistry, Graduate School of Dentistry, , Osaka University, ; Osaka, Japan
                [3 ]ISNI 0000 0004 0373 3971, GRID grid.136593.b, Division of Materials and Manufacturing Science, Graduate School of Engineering, , Osaka University, ; Osaka, Japan
                [4 ]ISNI 0000 0004 1769 5590, GRID grid.412021.4, Division of Clinical Cariology and Endodontology, Graduate School of Dentistry, , Health Sciences University of Hokkaido, ; Hokkaido, Japan
                Author information
                http://orcid.org/0000-0001-8052-1698
                Article
                38137
                10.1038/s41598-018-38137-7
                6362121
                30718745
                2d4a3752-755a-4e7c-8a96-e17e036d0f7d
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 April 2018
                : 13 December 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001691, MEXT | Japan Society for the Promotion of Science (JSPS);
                Award ID: JP16K12877
                Award ID: JP17H04382
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100005922, International Association for Dental Research (IADR);
                Award ID: Innovation in Oral Care Award
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article