Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      A Practical Method of Measuring Glomerular Filtration Rate by Iohexol Clearance Using Dried Capillary Blood Spots

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Exogenous tracer-based methods of measuring glomerular filtration rate (GFR) are difficult to perform, whilst creatinine-based estimation formulae are inaccurate. Methods: We assessed a new technique of measuring iohexol clearance using timed dried capillary blood spots. A reference GFR was measured in 81 subjects (GFR 15–124 ml/min/1.73 m<sup>2</sup>) by iohexol clearance using three venous samples (2, 3 and 4 h after an intravenous bolus). GFR was estimated by six test methods; iohexol clearance using (i) 3 blood spots (2, 3, 4 h); (ii) 2 blood spots (2, 4 h) and (iii) 1 blood spot (4 h); (iv) the Modification of Diet in Renal Disease (MDRD) formula; (v) the Cockcroft-Gault formula, and (vi) a formula estimating GFR from serum cystatin C concentration. For each test method the bias and precision were calculated as the mean and standard deviation (SD) of the ‘GFR differences’ (test method GFR – reference GFR). Results: The limits of agreement (bias ±1.96 × SD; in ml/min/1.73 m<sup>2</sup>) were: (i) 1.1 ± 15.1 for 3-spot iohexol clearance; (ii) 0.6 ± 14.9 for 2-spot iohexol clearance; (iii) 4.5 ± 21.2 for 1-spot iohexol clearance; (iv) –15.7 ± 33.3 for the MDRD formula; (v) –9.6 ± 32.9 for the Cockcroft-Gault formula, and (vi) –12.1 ± 31.7 for the Cystatin C formula. The accuracy of all six test methods was similar among individuals with GFR <60 ml/min/ 1.73 m<sup>2</sup>; however, in individuals with GFR ≧60 ml/min/ 1.73 m<sup>2</sup>, the MDRD, Cockcroft-Gault and Cystatin C formulae were all imprecise and systematically underestimated GFR. Conclusions: Blood spot iohexol clearance provides a potentially practical method of estimating GFR accurately in large-scale epidemiological studies especially among individuals without established chronic kidney disease.

          Related collections

          Most cited references 9

          • Record: found
          • Abstract: found
          • Article: not found

          Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis.

          Serum cystatin C (Cys C) has been proposed as a simple, accurate, and rapid endogenous marker of glomerular filtration rate (GFR) in research and clinical practice. However, there are conflicting reports regarding the superiority of Cys C over serum creatinine (Cr), with a few studies suggesting no significant difference. We performed a meta-analysis of available data from various studies to compare the accuracy of Cys C and Cr in relation to a reference standard of GFR. A bibliographic search showed 46 articles until December 31, 2001. We also retrieved data from eight other studies presented and published in abstract form. The overall correlation coefficient for the reciprocal of serum Cys C (r = 0.816; 95% confidence interval [CI], 0.804 to 0.826) was superior to that of the reciprocal of serum Cr (r = 0.742; 95% CI, 0.726 to 0.758; P < 0.001). Similarly, receiver operating characteristic (ROC)-plot area under the curve (AUC) values for 1/Cys C had greater identity with the reference test for GFR (mean ROC-plot AUC for Cys C, 0.926; 95% CI, 0.892 to 0.960) than ROC-plot AUC values for 1/Cr (mean ROC-plot AUC for serum Cr, 0.837; 95% CI, 0.796 to 0.878; P < 0.001). Immunonephelometric methods of Cys C assay produced significantly greater correlations than other assay methods (r = 0.846 versus r = 0.784; P < 0.001). In this meta-analysis using currently available data, serum Cys C is clearly superior to serum Cr as a marker of GFR measured by correlation or mean ROC-plot AUC. Copyright 2002 by the National Kidney Foundation, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function.

            Recent recommendations emphasize the need to assess kidney function using creatinine-based predictive equations to optimize the care of patients with chronic kidney disease. The most widely used equations are the Cockcroft-Gault (CG) and the simplified Modification of Diet in Renal Disease (MDRD) formulas. However, they still need to be validated in large samples of subjects, including large non-U.S. cohorts. Renal clearance of (51)Cr-EDTA was compared with GFR estimated using either the CG equation or the MDRD formula in a cohort of 2095 adult Europeans (863 female and 1232 male; median age, 53.2 yr; median measured GFR, 59.8 ml/min per 1.73 m(2)). When the entire study population was considered, the CG and MDRD equations showed very limited bias. They overestimated measured GFR by 1.94 ml/min per 1.73 m(2) and underestimated it by 0.99 ml/min per 1.73 m(2), respectively. However, analysis of subgroups defined by age, gender, body mass index, and GFR level showed that the biases of the two formulas could be much larger in selected populations. Furthermore, analysis of the SD of the mean difference between estimated and measured GFR showed that both formulas lacked precision; the CG formula was less precise than the MDRD one in most cases. In the whole study population, the SD was 15.1 and 13.5 ml/min per 1.73 m(2) for the CG and MDRD formulas, respectively. Finally, 29.2 and 32.4% of subjects were misclassified when the CG and MDRD formulas were used to categorize subjects according to the Kidney Disease Outcomes Quality Initiative chronic kidney disease classification, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate.

              Equations using serum creatinine level, age, sex, and other patient characteristics often are used to estimate glomerular filtration rate (GFR) in both clinical practice and research studies. However, the critical dependence of these equations on serum creatinine assay calibration often is overlooked, and the reproducibility of estimated GFR is rarely discussed. We address these issues in frozen samples from 212 Modification of Diet in Renal Disease (MDRD) study participants and 342 Third National Health and Nutrition Examination Survey (NHANES III) participants assayed for serum creatinine level a second time during November 2000. Variation in serum creatinine level was assessed in 1,919 NHANES III participants who had serum creatinine measured on two visits a median of 17 days apart. Linear regression was used to compare estimates. Calibration of serum creatinine varied substantially across laboratories and time. Data indicate that serum creatinine assays on the same samples were 0.23 mg/dL higher in the NHANES III than MDRD study. Data from the College of American Pathologists suggest that a difference of this magnitude across laboratories is not unusual. Conversely, serum creatinine assays an average of 2 weeks apart have better precision (SD of percentage of difference in estimated GFR, 15%; 90% of estimates within 21%). Errors in calibration make little difference in estimating severely decreased GFR (<30 mL/min/1.73 m2), but result in progressively larger differences at higher GFRs. Both clinical and research use of serum creatinine or equations to estimate GFR require knowledge of the calibration of the serum creatinine assay. Copyright 2002 by the National Kidney Foundation, Inc.
                Bookmark

                Author and article information

                Journal
                NEC
                Nephron Clin Pract
                10.1159/issn.1660-2110
                Nephron Clinical Practice
                S. Karger AG
                1660-2110
                2007
                July 2007
                23 May 2007
                : 106
                : 3
                : c104-c112
                Affiliations
                aRenal Studies Group, Clinical Trial Service Unit, Old Road Campus, Oxford, and bSouth West Thames Institute for Renal Research, St Helier Hospital, Carshalton, UK
                Article
                102997 Nephron Clin Pract 2007;106:c104–c112
                10.1159/000102997
                17522471
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, Tables: 3, References: 28, Pages: 1
                Categories
                Original Paper

                Comments

                Comment on this article

                Similar content 138

                Cited by 6