42
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insect pheromones—an overview of biosynthesis and endocrine regulation

      , , ,
      Insect Biochemistry and Molecular Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This overview describes, compares, and attempts to unify major themes related to the biosynthetic pathways and endocrine regulation of insect pheromone production. Rather than developing and dedicating an entirely unique set of enzymes for pheromone biosynthesis, insects appear to have evolved to add one or a few tissue-specific auxiliary or modified enzymes that transform the products of "normal" metabolism to pheromone compounds of high stereochemical and quantitative specificity. This general understanding is derived from research on model species from one exopterygote insect order (Blattodea) and three endopterygote insect orders (Coleoptera, Diptera, and Lepidoptera). For instance, the ketone hydrocarbon contact sex pheromone of the female German cockroach, Blattella germanica, derives its origins from fatty acid biosynthesis, arising from elongation of a methyl-branched fatty acyl-CoA moiety followed by decarboxylation, hydroxylation, and oxidation. Coleopteran sex and aggregation pheromones also arise from modifications of fatty acid biosynthesis or other biosynthetic pathways, such as the isoprenoid pathway (e.g. Cucujidae, Curculionidae, and Scolytidae), or from simple transformations of amino acids or other highly elaborated host precursors (e.g. Scarabaeidae and Scolytidae). Like the sex pheromone of B. germanica, female-produced dipteran (e.g. Drosophilidae and Muscidae) sex pheromone components originate from elongation of fatty acyl-CoA moieties followed by loss of the carbonyl carbon and the formation of the corresponding hydrocarbon. Female-produced lepidopteran sex pheromones are also derived from fatty acids, but many moths utilize a species-specific combination of desaturation and chain-shortening reactions followed by reductive modification of the carbonyl carbon. Carbon skeletons derived from amino acids can also be used as chain initiating units and elongated to lepidopteran pheromones by this pathway (e.g. Arctiidae and Noctuidae). Insects utilize at least three hormonal messengers to regulate pheromone biosynthesis. Blattodean and coleopteran pheromone production is induced by juvenile hormone III (JH III). In the female common house fly, Musca domestica, and possibly other species of Diptera, it appears that during hydrocarbon sex pheromone biosynthesis, ovarian-produced ecdysteroids regulate synthesis by affecting the activities of one or more fatty acyl-CoA elongation enzyme(s) (elongases). Lepidopteran sex pheromone biosynthesis is often mediated by a 33 or 34 amino acid pheromone biosynthesis activating neuropeptide (PBAN) through alteration of enzyme activities at one or more steps prior to or during fatty acid synthesis or during modification of the carbonyl group. Although a molecular level understanding of the regulation of insect pheromone biosynthesis is in its infancy, in the male California fivespined ips, Ips paraconfusus (Coleoptera: Scolytidae), JH III acts at the transcriptional level by increasing the abundance of mRNA for 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in de novo isoprenoid aggregation pheromone biosynthesis.

          Related collections

          Author and article information

          Journal
          Insect Biochemistry and Molecular Biology
          Insect Biochemistry and Molecular Biology
          Elsevier BV
          09651748
          June 1999
          June 1999
          : 29
          : 6
          : 481-514
          Article
          10.1016/S0965-1748(99)00016-8
          10406089
          2d5aabbc-2ee1-41c3-89f8-73594087388d
          © 1999

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article