+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Phylogenomics Reshuffles the Eukaryotic Supergroups


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Resolving the phylogenetic relationships between eukaryotes is an ongoing challenge of evolutionary biology. In recent years, the accumulation of molecular data led to a new evolutionary understanding, in which all eukaryotic diversity has been classified into five or six supergroups. Yet, the composition of these large assemblages and their relationships remain controversial.

          Methodology/Principle Findings

          Here, we report the sequencing of expressed sequence tags (ESTs) for two species belonging to the supergroup Rhizaria and present the analysis of a unique dataset combining 29908 amino acid positions and an extensive taxa sampling made of 49 mainly unicellular species representative of all supergroups. Our results show a very robust relationship between Rhizaria and two main clades of the supergroup chromalveolates: stramenopiles and alveolates. We confirm the existence of consistent affinities between assemblages that were thought to belong to different supergroups of eukaryotes, thus not sharing a close evolutionary history.


          This well supported phylogeny has important consequences for our understanding of the evolutionary history of eukaryotes. In particular, it questions a single red algal origin of the chlorophyll-c containing plastids among the chromalveolates. We propose the abbreviated name ‘SAR’ (Stramenopiles+Alveolates+Rhizaria) to accommodate this new super assemblage of eukaryotes, which comprises the largest diversity of unicellular eukaryotes.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          ProtTest: selection of best-fit models of protein evolution.

          Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
            • Record: found
            • Abstract: found
            • Article: not found

            The new higher level classification of eukaryotes with emphasis on the taxonomy of protists.

            This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional "kingdoms." The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.
              • Record: found
              • Abstract: found
              • Article: not found

              TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics

              Background Most analysis programs for inferring molecular phylogenies are difficult to use, in particular for researchers with little programming experience. Results TREEFINDER is an easy-to-use integrative platform-independent analysis environment for molecular phylogenetics. In this paper the main features of TREEFINDER (version of April 2004) are described. TREEFINDER is written in ANSI C and Java and implements powerful statistical approaches for inferring gene tree and related analyzes. In addition, it provides a user-friendly graphical interface and a phylogenetic programming language. Conclusions TREEFINDER is a versatile framework for analyzing phylogenetic data across different platforms that is suited both for exploratory as well as advanced studies.

                Author and article information

                Role: Academic Editor
                PLoS ONE
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                29 August 2007
                : 2
                : 8
                [1 ]Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
                [2 ]Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
                [3 ]Department of Biology, University of Oslo, Oslo, Norway
                University College Dublin, Ireland
                Author notes
                * To whom correspondence should be addressed. E-mail: Fabien.Burki@ 123456zoo.unige.ch

                Conceived and designed the experiments: FB JP. Performed the experiments: FB MM. Analyzed the data: KS FB MM JP. Contributed reagents/materials/analysis tools: SN AS. Wrote the paper: KS FB KJ JP.

                Burki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 6
                Research Article
                Evolutionary Biology
                Evolutionary Biology/Microbial Evolution and Genomics



                Comment on this article