21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Systemic treatment with sympatholytic dopamine agonists improves aberrant beta-cell hyperplasia and GLUT2, glucokinase, and insulin immunoreactive levels in ob/ob mice.

      Metabolism
      Animals, Apoptosis, drug effects, Cell Division, DNA, metabolism, Dopamine Agonists, pharmacology, Female, Glucagon, Glucokinase, Glucose Transporter Type 2, Hyperplasia, pathology, prevention & control, Immunohistochemistry, In Situ Nick-End Labeling, Insulin, Islets of Langerhans, Mice, Mice, Inbred C57BL, Mice, Obese, Monosaccharide Transport Proteins, Somatostatin, Sympatholytics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sympatholytic dopamine agonist treatment utilizing bromocriptine and SKF38393 (BC/SKF) significantly lowers basal plasma insulin levels and normalizes basal and glucose-induced insulin secretion of the pancreatic beta cell in ob/ob mice. While BC/SKF has no significant effect on pancreatic islet cells directly, drug action is mediated via alterations in the hypothalamic-neuroendocrine axis, which drives metabolic changes in peripheral tissues leading to a marked reduction in hyperglycemia and hyperlipidemia and corrects autonomic control of islet function. To elucidate the nature of the functional response of islets to systemic BC/SKF treatment in ob/ob mice, we investigated the relative changes in the levels of functionally important beta-cell proteins in situ, as well as differences in the beta-cell turnover rate, following a 2-week drug treatment. Isolated islets from treated mice exhibit a 3.5-fold increase in insulin content (P <.01) that correlated with a 51% reduction in basal plasma insulin levels (P <.01) compared with vehicle-treated controls. Using quantitative immunofluorescence microscopy on pancreatic tissue sections, insulin and GLUT2 immunoreactivity of islet beta cells of BC/SKF-treated mice were significantly increased (approximately 2.3-fold and approximately 4.4-fold, respectively; P <.002) to the levels observed in islets of their lean littermates. Glucokinase (GK) immunoreactivity was greatly (75%) reduced in beta cells from ob/ob versus lean mice (P <.0001). A modest increase in GK immunoreactivity in beta cells of drug-treated mice was observed (approximately 1.6-fold; P <.05). Isolated islets from BC/SKF-treated mice exhibit a 42% reduction in DNA content compared with vehicle-treated controls (P <.01) to levels observed in lean mice, but without notable differences in islet size. In situ assays for mitosis and apoptosis, using 5-bromodeoxyuridine (BrdU) and terminal deoxyribotransferase (TdT)-UTP nick end labeling (TUNEL) staining techniques, respectively, were performed in pancreas of these mice to determine if beta cells show a reduction in hyperplasia following BC/SKF treatment. Accordingly, a pronounced decrease in replicating, BrdU-positive beta cells in the drug-treated mice compared with the control group was observed, but without differences in their TUNEL-staining patterns. Collectively, these data suggest that systemic sympatholytic dopaminergic therapy that attenuates hyperglycemia and hyperlipidemia improves islet function in ob/ob mice by improving aberrations in the beta cell's glucose-sensing apparatus, enhancing insulin storage and/or retention, and stabilizing hyperplasia, thus reducing basal insulin levels. Copyright 2001 by W.B. Saunders Company

          Related collections

          Author and article information

          Comments

          Comment on this article