39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recombinant anti-vascular endothelial growth factor fusion protein efficiently suppresses choridal neovasularization in monkeys

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          KH902 is a fusion protein which combines ligand binding elements taken from the extracellular domains of vascular endothelial growth factor (VEGF) receptors 1 and 2 and the Fc portion of IgG1. This study is designed to examine the inhibitory effect of KH902 in the choroidal neovascularization (CNV) monkey model.

          Methods

          The binding affinity with VEGF was measured by using the human VEGF ELISA kit, and the biological activity effect of KH902 was assayed by an in vitro inhibition experiment on human umbilical vein endothelial cell proliferation that was induced by VEGF. The experimental CNV was induced by causing perimacular laser injury in the eyes of rhesus monkeys and confirmed by fluorescence fundus angiography (FFA), optical coherence tomography (OCT), and multifocal electroretinograms (mf-ERG) 20 days after the infliction of the laser injury. KH902 was delivered to the animals through intravitreal injection at various doses. Monkeys were observed four weeks after injection by ophthalmic examination, FFA, OCT, mf-ERG, histopathology, and immunohistochemistry analysis.

          Results

          KH902 binds VEGF at a high affinity with a mean of IC 50 of 10 pM. KH902 at 41 nM can completely block VEGF-induced cell proliferation and KH902 at 10.7 nM can block 82.6% of cell growth. In the eyes of the treatment group, which received 300 μg and 500 μg KH902, choroidal neovascularization leakage was obviously less than before injection, and no leakage was observed at the end of the observation after injection. No high reflect light echogenic mass was detected by OCT. However, in the 0.1 mg KH902-treated and control eyes, the leakage and high reflect light echogenic mass still existed. The reduction of experimental CNV was greater in eyes treated with 300 μg and 500 μg KH902 than in eyes treated with 0.1 mg KH902 and the control eyes. There were fiber-vasculosa membrane proliferation in the 100 μg KH902-treated eyes and control eyes but not in the 300 μg and 500 μg KH902-treated eyes under histopathologic observation. The results of mf-ERG demonstrated that there was greater improvement in the 300 μg and 500 μg KH902-treated eyes than in the 100 μg KH902-treated eyes and control eyes.

          Conclusions

          KH902 presents high affinity with VEGF and inhibitory activity on the proliferation of human umbilical vein endothelial cells (HUVECs) induced by VEGF. A single 300 μg or 500 μg KH902 intravitreal injection effectively inhibited leakage and growth of the CNV in rhesus monkeys without evidence of toxicity. This study suggests that KH902 has promise as a local antiangiogenic treatment of CNV.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Prevalence of age-related macular degeneration in the United States.

          To estimate the prevalence and distribution of age-related macular degeneration (AMD) in the United States by age, race/ethnicity, and gender. Summary prevalence estimates of drusen 125 microm or larger, neovascular AMD, and geographic atrophy were prepared separately for black and white persons in 5-year age intervals starting at 40 years. The estimated rates were based on a meta-analysis of recent population-based studies in the United States, Australia, and Europe. These rates were applied to 2000 US Census data and to projected US population figures for 2020 to estimate the number of the US population with drusen and AMD. The overall prevalence of neovascular AMD and/or geographic atrophy in the US population 40 years and older is estimated to be 1.47% (95% confidence interval, 1.38%-1.55%), with 1.75 million citizens having AMD. The prevalence of AMD increased dramatically with age, with more than 15% of the white women older than 80 years having neovascular AMD and/or geographic atrophy. More than 7 million individuals had drusen measuring 125 microm or larger and were, therefore, at substantial risk of developing AMD. Owing to the rapidly aging population, the number of persons having AMD will increase by 50% to 2.95 million in 2020. Age-related macular degeneration was far more prevalent among white than among black persons. Age-related macular degeneration affects more than 1.75 million individuals in the United States. Owing to the rapid aging of the US population, this number will increase to almost 3 million by 2020.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pegaptanib for neovascular age-related macular degeneration.

            Pegaptanib, an anti-vascular endothelial growth factor therapy, was evaluated in the treatment of neovascular age-related macular degeneration. We conducted two concurrent, prospective, randomized, double-blind, multicenter, dose-ranging, controlled clinical trials using broad entry criteria. Intravitreous injection into one eye per patient of pegaptanib (at a dose of 0.3 mg, 1.0 mg, or 3.0 mg) or sham injections were administered every 6 weeks over a period of 48 weeks. The primary end point was the proportion of patients who had lost fewer than 15 letters of visual acuity at 54 weeks. In the combined analysis of the primary end point (for a total of 1186 patients), efficacy was demonstrated, without a dose-response relationship, for all three doses of pegaptanib (P<0.001 for the comparison of 0.3 mg with sham injection; P<0.001 for the comparison of 1.0 mg with sham injection; and P=0.03 for the comparison of 3.0 mg with sham injection). In the group given pegaptanib at 0.3 mg, 70 percent of patients lost fewer than 15 letters of visual acuity, as compared with 55 percent among the controls (P<0.001). The risk of severe loss of visual acuity (loss of 30 letters or more) was reduced from 22 percent in the sham-injection group to 10 percent in the group receiving 0.3 mg of pegaptanib (P<0.001). More patients receiving pegaptanib (0.3 mg), as compared with sham injection, maintained their visual acuity or gained acuity (33 percent vs. 23 percent; P=0.003). As early as six weeks after beginning therapy with the study drug, and at all subsequent points, the mean visual acuity among patients receiving 0.3 mg of pegaptanib was better than in those receiving sham injections (P<0.002). Among the adverse events that occurred, endophthalmitis (in 1.3 percent of patients), traumatic injury to the lens (in 0.7 percent), and retinal detachment (in 0.6 percent) were the most serious and required vigilance. These events were associated with a severe loss of visual acuity in 0.1 percent of patients. Pegaptanib appears to be an effective therapy for neovascular age-related macular degeneration. Its long-term safety is not known. Copyright 2004 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment.

              To evaluate the safety and efficacy of intravitreal injections of an antigen-binding fragment of a recombinant humanized monoclonal antibody directed toward vascular endothelial growth factor (rhuFab VEGF) in a monkey model of choroidal neovascularization (CNV). In phase 1 of the study, each animal received intravitreal injections, 500 microg per eye, of rhuFab VEGF in one eye (prevention eye), while the contralateral eye received rhuFab VEGF vehicle (control eye) at 2-week intervals. On day 21, laser photocoagulation was performed to induce CNV. In phase 2, the vehicle-treated eye was crossed over and both eyes received 500 microg of rhuFab VEGF beginning 21 days following laser-induced injury at days 42 and 56. The eyes were monitored by ophthalmic examinations, color photographs, and fluorescein angiography. rhuFab VEGF did not cause any ocular hemorrhages. All eyes treated with rhuFab VEGF developed acute anterior chamber inflammation within 24 hours of the first injection that resolved within 1 week, and this inflammation was less severe with subsequent injections. The incidence of CNV, defined angiographically, was significantly lower in the prevention eyes than the control eyes (P<.001). Subsequent treatments were associated with less leakage in eyes with established CNV that were crossed over from the control eyes to the treatment eyes (P =.001). Intravitreal rhuFab VEGF injections prevented formation of clinically significant CNV in cynomolgus monkeys and decreased leakage of already formed CNV with no significant toxic effects. This study provides the nonclinical proof of principle for ongoing clinical studies of intravitreally injected rhuFab VEGF in patients with neovascular age-related macular degeneration.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2008
                10 January 2008
                : 14
                : 37-49
                Affiliations
                [1 ]Department of Ophthalmology, West China Hospital, Sichuan University, China
                [2 ]Chengdu Kanghong Biotechnology Co. Ltd, Sichuan Province, China
                Author notes
                Correspondence to: Dechao Yu, PhD, Chengdu Kanghong Biotechnology Co. Ltd, 36 ShuXi Road, JinNiu District, Chengdu, China; Phone: +86-28-8751-0474; FAX: +86-28-8751-0627; email: mich204@yahoo.com
                Article
                5 2007MOLVIS0229
                2267739
                18246030
                2d6c7e44-8157-4605-bd67-8b1177ed4160
                Copyright © 2008 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 July 2007
                : 08 January 2007
                Categories
                Research Article
                Custom metadata
                Export to XML

                Vision sciences
                Vision sciences

                Comments

                Comment on this article