20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Sex Differences in the Cannabinoid Modulation of Appetite, Body Temperature and Neurotransmission at POMC Synapses

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We sought to determine whether sex differences exist for the cannabinoid modulation of appetite, body temperature and neurotransmission at pro-opiomelanocortin (POMC) synapses. Gonadectomized male and female guinea pigs were outfitted to monitor core body temperature and injected with either the CB1 receptor agonist WIN 55,212-2 (1 mg/kg s.c.), antagonist AM251 (3 mg/kg s.c.) or vehicle (1 ml/kg s.c.) and evaluated for changes in six indices of feeding behavior under ad libitum conditions for 7 days. WIN 55,212-2 elicited an overt, sexually differentiated hyperphagia in which males displayed larger increases in hourly and daily intake, consumption/gram body weight, meal size and meal duration. The agonist also produced a more robust acute hypothermia in males than in females. In addition, males were more sensitive to the hypophagic effect of AM251, manifested by comparatively sizeable decreases in hourly intake, consumption/gram body weight, meal frequency and hyperthermia. To gain additional insight into the cellular mechanism underlying cannabinoid regulation of energy homeostasis, we performed whole-cell patch clamp recordings in hypothalamic slices prepared from gonadectomized male and female guinea pigs, and monitored miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) in arcuate (ARC) neurons. ARC neurons from females exhibited a higher basal mEPSC frequency. WIN 55,212-2 dose-dependently reduced mEPSC and mIPSC frequency; however, cells from males were far less sensitive to the CB1 receptor-mediated decrease in mIPSC frequency. These effects were observed in neurons subsequently identified as POMC neurons. These data reveal pronounced sex differences in how cannabinoids influence the hypothalamic control of homeostasis.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group.

          To compare the effects of cannabis extract (CE), delta-9-tetrahydrocannabinol (THC), and placebo (PL) on appetite and quality of life (QOL) in patients with cancer-related anorexia-cachexia syndrome (CACS). Adult patients with advanced cancer, CACS, weight loss (> or = 5% over 6 months), and Eastern Cooperative Oncology Group (ECOG) performance status (PS) or = 10%), PS (13% ECOG = 2), antineoplastic treatment (50%), appetite (mean VAS score, 31/100 mm), and QOL (mean score, 30/100). Intent-to-treat analysis showed no significant differences between the three arms for appetite, QOL, or cannabinoid-related toxicity. Increased appetite was reported by 73%, 58%, and 69% of patients receiving CE, THC, or PL, respectively. An independent data review board recommended termination of recruitment because of insufficient differences between study arms. CE at the oral dose administered was well tolerated by these patients with CACS. No differences in patients' appetite or QOL were found either between CE, THC, and PL or between CE and THC at the dosages investigated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats.

            This investigation reports the possible role of the endocannabinoid anandamide in modulating appetitive behaviour. Given that cannabinoids have been used clinically to stimulate appetite in HIV and cancer chemotherapy patients, there has been a renewed interest in the involvement of cannabinoids in appetite modulation. This is the first report on the administration of anandamide into the ventromedial hypothalamus. Pre-satiated rats received an intrahypothalamic injection of anandamide (50 ng x 0.5 microl(-1)) followed by measurement of food intake at 3 h post injection. Administration of anandamide induced significant hyperphagia. Pretreatment with the selective CB1 cannabinoid antagonist SR 141716 (30 microg x 0.5 microl(-1)), 30 min prior to anandamide injection resulted in an attenuation of the anandamide-induced hyperphagia (P<0.001). This study demonstrates that intrahypothalamic anandamide initiates appetite by stimulation of CB1 receptors, thus providing evidence on the involvement of hypothalamic endocannabinoids in appetite initiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocannabinoids and the control of energy balance.

              Two receptors have been cloned to date for the psychotropic compound Delta(9)-tetrahydrocannabinol, and termed cannabinoid CB(1) and CB(2) receptors. Their endogenous ligands, the endocannabinoids, have also been identified. CB(1) receptors and endocannabinoids are present in brain structures controlling energy intake and in peripheral cells (hepatocytes, adipocytes, pancreatic islet cells) regulating energy homeostasis. CB(2) receptors are more abundant in lymphocytes and macrophages, and participate in immune and inflammatory reactions. Metabolic hormones and peptides regulate the levels of the endocannabinoids and, hence, the activity of cannabinoid receptors in several tissues in a seemingly coordinated way. The endocannabinoids, particularly after stress and brief food deprivation, act in turn as local modulators of the expression and action of neurotransmitters, hormones and adipokines involved in metabolic control. Endocannabinoid overactivity seems to accompany metabolic and eating disorders and to contribute to the development of abdominal obesity, dyslipidemia and hyperglycemia. Accordingly, clinical trials have shown that CB(1) receptor antagonists are efficacious at reducing not only food intake, but also abdominal adiposity and its metabolic sequelae.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2009
                June 2009
                09 January 2009
                : 89
                : 4
                : 424-440
                Affiliations
                Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, Calif., USA
                Article
                191646 PMC5427591 Neuroendocrinology 2009;89:424–440
                10.1159/000191646
                PMC5427591
                19136814
                2d6db724-e38a-4497-b7bd-f42ad6ccf311
                © 2009 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 25 March 2008
                : 24 October 2008
                Page count
                Figures: 13, References: 65, Pages: 17
                Categories
                CRF, Adrenocorticotrophin, Adrenal Steroids and Stress

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Cachexia,CB1 receptor,GABA,Glutamate,Obesity

                Comments

                Comment on this article