21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exposure to endocrine disruptors during adulthood: consequences for female fertility

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endocrine disrupting chemicals are ubiquitous chemicals that exhibit endocrine disrupting properties in both humans and animals. Female reproduction is an important process, which is regulated by hormones and is susceptible to the effects of exposure to endocrine disrupting chemicals. Disruptions in female reproductive functions by endocrine disrupting chemicals may result in subfertility, infertility, improper hormone production, estrous and menstrual cycle abnormalities, anovulation, and early reproductive senescence. This review summarizes the effects of a variety of synthetic endocrine disrupting chemicals on fertility during adult life. The chemicals covered in this review are pesticides (organochlorines, organophosphates, carbamates, pyrethroids, and triazines), heavy metals (arsenic, lead, and mercury), diethylstilbesterol, plasticizer alternatives (di-(2-ethylhexyl) phthalate and bisphenol A alternatives), 2,3,7,8-tetrachlorodibenzo-p-dioxin, nonylphenol, polychlorinated biphenyls, triclosan, and parabens. This review focuses on the hypothalamus, pituitary, ovary, and uterus because together they regulate normal female fertility and the onset of reproductive senescence. The literature shows that several endocrine disrupting chemicals have endocrine disrupting abilities in females during adult life, causing fertility abnormalities in both humans and animals.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals.

          The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes

            Background Increasing concern over bisphenol A (BPA) as an endocrine-disrupting chemical and its possible effects on human health have prompted the removal of BPA from consumer products, often labeled “BPA-free.” Some of the chemical replacements, however, are also bisphenols and may have similar physiological effects in organisms. Bisphenol S (BPS) and bisphenol F (BPF) are two such BPA substitutes. Objectives This review was carried out to evaluate the physiological effects and endocrine activities of the BPA substitutes BPS and BPF. Further, we compared the hormonal potency of BPS and BPF to that of BPA. Methods We conducted a systematic review based on the Office of Health Assessment and Translation (OHAT) protocol. Results We identified the body of literature to date, consisting of 32 studies (25 in vitro only, and 7 in vivo). The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo. BPS also has potencies similar to that of estradiol in membrane-mediated pathways, which are important for cellular actions such as proliferation, differentiation, and death. BPS and BPF also showed other effects in vitro and in vivo, such as altered organ weights, reproductive end points, and enzyme expression. Conclusions Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects. Citation Rochester JR, Bolden AL. 2015. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123:643–650; http://dx.doi.org/10.1289/ehp.1408989
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Triclosan: environmental exposure, toxicity and mechanisms of action.

              Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS] is a broad spectrum antibacterial agent used in personal care, veterinary, industrial and household products. TCS is commonly detected in aquatic ecosystems, as it is only partially removed during the wastewater treatment process. Sorption, biodegradation and photolytic degradation mitigate the availability of TCS to aquatic biota; however the by-products such as methyltriclosan and other chlorinated phenols may be more resistant to degradation and have higher toxicity than the parent compound. The continuous exposure of aquatic organisms to TCS, coupled with its bioaccumulation potential, have led to detectable levels of the antimicrobial in a number of aquatic species. TCS has been also detected in breast milk, urine and plasma, with levels of TCS in the blood correlating with consumer use patterns of the antimicrobial. Mammalian systemic toxicity studies indicate that TCS is neither acutely toxic, mutagenic, carcinogenic, nor a developmental toxicant. Recently, however, concern has been raised over TCS's potential for endocrine disruption, as the antimicrobial has been shown to disrupt thyroid hormone homeostasis and possibly the reproductive axis. Moreover, there is strong evidence that aquatic species such as algae, invertebrates and certain types of fish are much more sensitive to TCS than mammals. TCS is highly toxic to algae and exerts reproductive and developmental effects in some fish. The potential for endocrine disruption and antibiotic cross-resistance highlights the importance of the judicious use of TCS, whereby the use of TCS should be limited to applications where it has been shown to be effective. Copyright © 2011 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Journal of Endocrinology
                Bioscientifica
                0022-0795
                1479-6805
                June 2017
                June 2017
                June 2017
                June 2017
                : 233
                : 3
                : R109-R129
                Affiliations
                [1 ]Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
                Article
                10.1530/JOE-17-0023
                5479690
                28356401
                2d71c762-45b2-4123-bc45-60d649d9c005
                © 2017

                Free to read

                History

                Comments

                Comment on this article