Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

A Versatile, Ultralight, Nitrogen-Doped Graphene Framework

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Related collections

      Most cited references 46

      • Record: found
      • Abstract: found
      • Article: not found

      Graphene-based ultracapacitors.

      The surface area of a single graphene sheet is 2630 m(2)/g, substantially higher than values derived from BET surface area measurements of activated carbons used in current electrochemical double layer capacitors. Our group has pioneered a new carbon material that we call chemically modified graphene (CMG). CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here we demonstrate in an ultracapacitor cell their performance. Specific capacitances of 135 and 99 F/g in aqueous and organic electrolytes, respectively, have been measured. In addition, high electrical conductivity gives these materials consistently good performance over a wide range of voltage scan rates. These encouraging results illustrate the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        Graphene and Graphene Oxide: Synthesis, Properties, and Applications

        There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

          The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of -80 millivolts and a current density of 4.1 milliamps per square centimeter at -0.22 volts, compared with -85 millivolts and 1.1 milliamps per square centimeter at -0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.
            Bookmark

            Author and article information

            Journal
            Angewandte Chemie International Edition
            Angew. Chem. Int. Ed.
            Wiley-Blackwell
            14337851
            November 05 2012
            November 05 2012
            : 51
            : 45
            : 11371-11375
            10.1002/anie.201206554
            © 2012

            http://doi.wiley.com/10.1002/tdm_license_1.1

            Product

            Comments

            Comment on this article