35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis

      , , , ,
      Magnetic Resonance in Medicine
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The authors review the theoretical basis of determination of cerebral blood flow (CBF) using dynamic measurements of nondiffusible contrast agents, and demonstrate how parametric and nonparametric deconvolution techniques can be modified for the special requirements of CBF determination using dynamic MRI. Using Monte Carlo modeling, the use of simple, analytical residue models is shown to introduce large errors in flow estimates when actual, underlying vascular characteristics are not sufficiently described by the chosen function. The determination of the shape of the residue function on a regional basis is shown to be possible only at high signal-to-noise ratio. Comparison of several nonparametric deconvolution techniques showed that a nonparametric deconvolution technique (singular value decomposition) allows estimation of flow relatively independent of underlying vascular structure and volume even at low signal-to-noise ratio associated with pixel-by-pixel deconvolution.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Perfusion imaging with NMR contrast agents.

          Knowledge of regional hemodynamics has widespread application for both physiological research and clinical assessment. Here we review the use of MR contrast agents to measure tissue perfusion. Two primary mechanisms of image contrast are discussed: relaxivity and susceptibility effects. Relaxivity effects result from dipolar enhancement of T1 and T2 rates. Because tissue T1 rates are intrinsically smaller, the dominant effect is shortening of T1 relaxation times. The second mechanism of image contrast is the variation in tissue magnetic field produced by heterogeneous distribution of high magnetic susceptibility agents. Quantitation of tissue perfusion requires a detailed understanding of the relation between contrast agent concentration and associated MR signal changes. Studies to date show a linear relationship between contrast agent concentration and rate change in most organs. The exact nature of this relationship in the dynamic setting of rapid contrast agent passage through the microcirculatory bed is less well established. If this relationship is known, tracer kinetic modeling can be used to calculate regional blood flow and blood volume. Data are presented which indicate that this approach is feasible, and suggest the potential of contrast-enhanced NMR for high resolution in vivo mapping of both physiology and anatomy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results.

            This report evaluates several methods to map relative cerebral blood flow (rCBF) by applying both parametric and nonparametric techniques to deconvolve high resolution dynamic MRI measurements of paramagnetic bolus passages with noninvasively determined arterial inputs. We found a nonparametric (singular value decomposition (SVD)) deconvolution technique produced the most robust results, giving mean gray:white flow ratio of 2.7 +/- 0.5 (SEM) in six normal volunteers, in excellent agreement with recent PET literature values for age-matched subjects. Similar results were obtained by using a model-dependent approach that assumes an exponential residue function, but not for a Gaussian-shaped residue function or for either Fourier or regularization-based model-independent approaches. Pilot studies of our CBF mapping techniques in patients with tumor, stroke, and migraine aura demonstrated that these techniques can be readily used on data routinely acquired by using current echo planar imaging technology. By using these techniques, the authors visualized important regional hemodynamic changes not detectable with rCBV mapping algorithms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microscopic susceptibility variation and transverse relaxation: theory and experiment.

              Microscopic susceptibility variations invariably increase apparent transverse relaxation rates. In this paper, we present comparisons between Monte Carlo simulations and experiments with polystyrene microspheres to demonstrate that this enhanced relaxation can be explained quantitatively for both spin echo and gradient echo imaging experiments. The spheres used (1 to 30 microms), and degree of susceptibility variation (caused by 0-12 mM Dy-DTPA) covered a wide range of biologically relevant compartment sizes and contrast agent concentrations. These results show that several regimes of behavior exist, and that contrast dependence is quite different in these regimes. For a given susceptibility, delta chi, a small range of particle sizes show peak transverse relaxation. For the range of susceptibilities found in the first pass of a clinical IV contrast agent bolus, this size range is 5 to 10 microns, or roughly capillary sized compartments. In both our simulations and experiments, smaller spheres showed quadratic relaxation versus concentration curves, and larger particles showed sublinear behavior. For particles corresponding to the peak relaxivity, the relaxation-concentration curves were linear. In addition, we demonstrated that increasing the diffusion coefficient can increase, decrease, or, paradoxically, leave unaffected the apparent relaxation rate. The regime for which the diffusion coefficient is relatively unimportant corresponds to the region of peak relaxivity. By using the Bloch-Torrey equation to produce scaling rules, the specific Monte Carlo simulations were extended to more general cases. We use these scaling rules to demonstrate why we often find that susceptibility-induced relaxation rates vary approximately linearly with concentration of injected agent.
                Bookmark

                Author and article information

                Journal
                Magnetic Resonance in Medicine
                Magn. Reson. Med.
                Wiley
                07403194
                15222594
                November 1996
                November 1996
                : 36
                : 5
                : 715-725
                Article
                10.1002/mrm.1910360510
                8916022
                2db33759-7384-42e2-bcb3-b638715f8e6a
                © 1996

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article