24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Host Defense Proteome of Human and Bovine Milk

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Milk is the single source of nutrients for the newborn mammal. The composition of milk of different mammals has been adapted during evolution of the species to fulfill the needs of the offspring. Milk not only provides nutrients, but it also serves as a medium for transfer of host defense components to the offspring. The host defense proteins in the milk of different mammalian species are expected to reveal signatures of evolution. The aim of this study is therefore to study the difference in the host defense proteome of human and bovine milk. We analyzed human and bovine milk using a shot-gun proteomics approach focusing on host defense-related proteins. In total, 268 proteins in human milk and 269 proteins in bovine milk were identified. Of these, 44 from human milk and 51 from bovine milk are related to the host defense system. Of these proteins, 33 were found in both species but with significantly different quantities. High concentrations of proteins involved in the mucosal immune system, immunoglobulin A, CD14, lactoferrin, and lysozyme, were present in human milk. The human newborn is known to be deficient for at least two of these proteins (immunoglobulin A and CD14). On the other hand, antimicrobial proteins (5 cathelicidins and lactoperoxidase) were abundant in bovine milk. The high concentration of lactoperoxidase is probably linked to the high amount of thiocyanate in the plant-based diet of cows. This first detailed analysis of host defense proteins in human and bovine milk is an important step in understanding the function of milk in the development of the immune system of these two mammals.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome.

          Highly complex protein mixtures can be directly analyzed after proteolysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). In this paper, we have utilized the combination of strong cation exchange (SCX) and reversed-phase (RP) chromatography to achieve two-dimensional separation prior to MS/MS. One milligram of whole yeast protein was proteolyzed and separated by SCX chromatography (2.1 mm i.d.) with fraction collection every minute during an 80-min elution. Eighty fractions were reduced in volume and then re-injected via an autosampler in an automated fashion using a vented-column (100 microm i.d.) approach for RP-LC-MS/MS analysis. More than 162,000 MS/MS spectra were collected with 26,815 matched to yeast peptides (7,537 unique peptides). A total of 1,504 yeast proteins were unambiguously identified in this single analysis. We present a comparison of this experiment with a previously published yeast proteome analysis by Yates and colleagues (Washburn, M. P.; Wolters, D.; Yates, J. R., III. Nat. Biotechnol. 2001, 19, 242-7). In addition, we report an in-depth analysis of the false-positive rates associated with peptide identification using the Sequest algorithm and a reversed yeast protein database. New criteria are proposed to decrease false-positives to less than 1% and to greatly reduce the need for manual interpretation while permitting more proteins to be identified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alarmins: chemotactic activators of immune responses.

            The recruitment and activation of antigen-presenting cells are critical early steps in mounting an immune response. Many microbial components and endogenous mediators participate in this process. Recent studies have identified a group of structurally diverse multifunctional host proteins that are rapidly released following pathogen challenge and/or cell death and, most importantly, are able to both recruit and activate antigen-presenting cells. These potent immunostimulants, including defensins, cathelicidin, eosinophil-derived neurotoxin, and high-mobility group box protein 1, serve as early warning signals to activate innate and adaptive immune systems. We propose to highlight these proteins' unique activities by grouping them under the novel term 'alarmins', in recognition of their role in mobilizing the immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces.

              Secretory antibodies of the immunoglobulin A (IgA) class form the first line of antigen-specific immune protection against inhaled, ingested, and sexually transmitted pathogens and antigens at mucosal surfaces. Epithelial transcytosis of polymeric IgA (pIgA) is mediated by the polymeric immunoglobulin receptor (pIgR). At the apical surface, the extracellular ligand-binding region of pIgR, known as secretory component (SC), is cleaved and released in free form or as a component of secretory IgA (SIgA). SC has innate anti-microbial properties, and it protects SIgA from proteolytic degradation. Expression of pIgR is regulated by microbial products through Toll-like receptor signaling and by host factors such as cytokines and hormones. Recent studies of the structure of the extracellular ligand-binding domain of pIgR have revealed mechanisms by which it binds pIgA and other ligands. During transcytosis, pIgA has been shown to neutralize pathogens and antigens within intracellular vesicular compartments. The recent identification of disease-associated polymorphisms in human pIgR near the cleavage site may help to unravel the mystery of how pIgR is cleaved to SC. The identification of novel functions for SC and SIgA has expanded our view of the immunobiology of pIgR, a key component of the mucosal immune system that bridges innate and adaptive immune defense.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                27 April 2011
                : 6
                : 4
                : e19433
                Affiliations
                [1 ]Dairy Science and Technology Group, Wageningen University, Wageningen, The Netherlands
                [2 ]Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
                [3 ]FrieslandCampina, Amersfoort, The Netherlands
                [4 ]Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
                University of South Florida College of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: KH HvV SdV TvH JvA JV. Performed the experiments: KH SB JV. Analyzed the data: KH HvV SdV SB JV. Contributed reagents/materials/analysis tools: SB SdV JV. Wrote the paper: KH HvV SdV SB TvH JvA JV.

                Article
                PONE-D-11-03487
                10.1371/journal.pone.0019433
                3083434
                21556375
                2dc7ede8-7891-4c65-b814-a766be5f1b26
                Hettinga et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 February 2011
                : 29 March 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Biochemistry
                Developmental Biology
                Evolutionary Developmental Biology
                Evolutionary Biology
                Evolutionary Immunology
                Immunology
                Immune Response
                Immune System
                Immunoglobulins
                Proteomics
                Medicine
                Nutrition
                Pediatrics
                Veterinary Science
                Veterinary Medicine
                Veterinary Immunology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article