24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Small molecule inhibition of CBP/catenin interactions eliminates drug resistant clones in acute lymphoblastic leukemia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug resistance in acute lymphoblastic leukemia (ALL) remains a major problem warranting new treatment strategies. Wnt/catenin signaling is critical for the self-renewal of normal hematopoietic progenitor cells. Deregulated Wnt signaling is evident in chronic and acute myeloid leukemia, however little is known about ALL. Differential interaction of catenin with either the Kat3 coactivator CREBBP (CBP) or the highly homologous EP300 (p300) is critical to determine divergent cellular responses and provides a rationale for the regulation of both proliferation and differentiation by the Wnt signaling pathway. Usage of the coactivator CBP by catenin leads to transcriptional activation of cassettes of genes that are involved in maintenance of progenitor cell self-renewal. However, the use of the coactivator p300, leads to activation of genes involved in the initiation of differentiation. ICG-001 is a novel small molecule modulator of Wnt/catenin signaling, which specifically binds to the N-terminus of CBP and not p300, within amino acids 1–110, thereby disrupting the interaction between CBP and catenin. Here, we report that selective disruption of the CBP/β- and γ-catenin interactions using ICG-001 leads to differentiation of pre-B ALL cells and loss of self-renewal capacity. Survivin, an inhibitor-of-apoptosis protein, was also downregulated in primary ALL after treatment with ICG-001. Using ChIP assay, we demonstrate occupancy by CBP of the survivin promoter, which is decreased by ICG-001 in primary ALL. CBP-mutations have been recently identified in a significant percentage of ALL patients, however, almost all of the identified mutations reported occur C-terminal to the binding site for ICG-001. Importantly, ICG-001, regardless of CBP mutational status and chromosomal aberration, leads to eradication of drug-resistant primary leukemia in combination with conventional therapy in vitro and significantly prolongs the survival of NOD/SCID mice engrafted with primary ALL. Therefore, specifically inhibiting CBP/catenin transcription represents a novel approach to overcome relapse in ALL.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

          A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected].

            Inherited and somatic mutations in the adenomatous polyposis coli occur in most colon cancers, leading to activation of beta-catenin-responsive genes. To identify small molecule antagonists of this pathway, we challenged transformed colorectal cells with a secondary structure-templated chemical library, looking for compounds that inhibit a beta-catenin-responsive reporter. We identified ICG-001, a small molecule that down-regulates beta-catenin/T cell factor signaling by specifically binding to cyclic AMP response element-binding protein. ICG-001 selectively induces apoptosis in transformed cells but not in normal colon cells, reduces in vitro growth of colon carcinoma cells, and is efficacious in the Min mouse and nude mouse xenograft models of colon cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML.

              Leukemia stem cells (LSCs) are capable of limitless self-renewal and are responsible for the maintenance of leukemia. Because selective eradication of LSCs could offer substantial therapeutic benefit, there is interest in identifying the signaling pathways that control their development. We studied LSCs in mouse models of acute myelogenous leukemia (AML) induced either by coexpression of the Hoxa9 and Meis1a oncogenes or by the fusion oncoprotein MLL-AF9. We show that the Wnt/beta-catenin signaling pathway is required for self-renewal of LSCs that are derived from either hematopoietic stem cells (HSC) or more differentiated granulocyte-macrophage progenitors (GMP). Because the Wnt/beta-catenin pathway is normally active in HSCs but not in GMP, these results suggest that reactivation of beta-catenin signaling is required for the transformation of progenitor cells by certain oncogenes. beta-catenin is not absolutely required for self-renewal of adult HSCs; thus, targeting the Wnt/beta-catenin pathway may represent a new therapeutic opportunity in AML.
                Bookmark

                Author and article information

                Journal
                8711562
                6325
                Oncogene
                Oncogene
                Oncogene
                0950-9232
                1476-5594
                12 April 2014
                03 June 2013
                24 April 2014
                24 October 2014
                : 33
                : 17
                : 2169-2178
                Affiliations
                [1 ]Childrens Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics, University of Southern California, Keck School of Medicine, Los Angeles, CA
                [2 ]Norris Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, Department of Molecular Pharmacology and Toxicology, Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA
                [3 ]Comprehensive Cancer Center, Department of Laboratory Medicine, University of California, San Francisco, California
                [4 ]Centre for Blood Research (CBR), Faculty of Medicine, Division of Hematology, University of British Columbia, Canada
                [5 ]Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis
                [6 ]Division of Hematology/Oncology, Northwestern University, Chicago
                [7 ]Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
                Author notes
                [* ] Corresponding Author: Michael Kahn, Ph.D., University of Southern California, Norris Comprehensive Cancer Center, 1450 Biggy St., NRT-4501, Los Angeles, CA 90033, Phone number: (323) 442-2063, kahnm@ 123456usc.edu
                Article
                NIHMS560207
                10.1038/onc.2013.169
                3994178
                23728349
                2dd6f1e0-513b-41e5-aff1-e5033b11c896
                History
                Categories
                Article

                Oncology & Radiotherapy
                acute lymphoblastic leukemia,drug resistance,small molecule inhibitor,cbp,p300,icg-001

                Comments

                Comment on this article