68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of Pools of Targeted Salmonella Deletion Mutants Identifies Novel Genes Affecting Fitness during Competitive Infection in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array- based analysis of cistrons under selection (ABACUS).

          Author Summary

          One strategy to define bacterial genes with a role during infection involves the screening of a pool of random transposon insertion mutants, where each mutant is identifiable by a specific motif or unique transcript. Changes in the survival of each mutant indicate a role of the mutated region during infection. To ensure coverage of most genes of interest, a large number of random transposon mutants would be needed. However, when a pool of bacterial mutants spreads into different sites in an animal host, some mutants are lost at random if the founder population (i.e. the bacteria initially reaching this site, before expansion) is smaller than the number of mutants introduced into the animal. This random loss severely obscures mutants that are truly at a disadvantage. In order to minimize the number of mutants to be screened and thus minimize random loss of mutants from an infecting pool, we generated targeted specific deletions in each gene of interest. Furthermore, we inserted a promoter in each mutant that allows simultaneous monitoring of a pool of these mutants on a novel inexpensive microarray. To demonstrate the utility of our technique, a pool of over 1,000 gene-targeted Salmonella mutants was injected into mice and recovered from spleens. We identified mutants that were less fit than wild-type Salmonella in this model. Eleven mutants in genes that were not previously known to affect Salmonella fitness in intraperitoneal infection were confirmed using the individual mutants in competition with wild-type bacteria. These new phenotypes include the first two examples of attenuation and one of hypervirulence in Salmonella due to mutations in small stable RNAs, a class of regulators that bind to other RNAs and proteins.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Genes required for mycobacterial growth defined by high density mutagenesis.

          Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant.

            Two cassettes with tetracycline-resistance (TcR) and kanamycin-resistance (KmR) determinants have been developed for the construction of insertion and deletion mutants of cloned genes in Escherichia coli. In both cassettes, the resistance determinants are flanked by the short direct repeats (FRT sites) required for site-specific recombination mediated by the yeast Flp recombinase. In addition, a plasmid with temperature-sensitive replication for temporal production of the Flp enzyme in E. coli has been constructed. After a gene disruption or deletion mutation is constructed in vitro by insertion of one of the cassettes into a given gene, the mutated gene is transferred to the E. coli chromosome by homologous recombination and selection for the antibiotic resistance provided by the cassette. If desired, the resistance determinant can subsequently be removed from the chromosome in vivo by Flp action, leaving behind a short nucleotide sequence with one FRT site and with no polar effect on downstream genes. This system was applied in the construction of an E. coli endA deletion mutation which can be transduced by P1 to the genetic background of interest using TcR as a marker. The transductant can then be freed of the TcR if required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TPR proteins: the versatile helix.

              Tetratrico peptide repeat (TPR) proteins have several interesting properties, including their folding characteristics, modular architecture and range of binding specificities. In the past five years, many 3D structures of TPR domains have been solved, revealing at a molecular level the versatility of this basic fold. Here, we discuss the structure of TPRs and highlight the diversity of arrangements and functions that are associated with these ubiquitous domains. Genomic analyses of the distribution of TPR domains are presented along with implications for protein engineering.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                July 2009
                July 2009
                3 July 2009
                : 5
                : 7
                : e1000477
                Affiliations
                [1 ]Sidney Kimmel Cancer Center, San Diego, California, United States of America
                [2 ]Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, College Station, Texas, United States of America
                University of Washington, United States of America
                Author notes
                * E-mail: handrews@ 123456medicine.tamhsc.edu (corresponding author for animal studies, HLA-P); mcclelland.michael@ 123456gmail.com (MM)
                [¤a]

                Current address: Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile

                [¤b]

                Current address: Division of Infectious Diseases, Asian Medical Center, University of Ulsan College of Medicine, Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan, Seoul, Republic of Korea

                Conceived and designed the experiments: HLAP MM. Performed the experiments: CAS MMR SP SHC HLAP. Analyzed the data: CAS SP FL HLAP MM. Wrote the paper: CAS SP HLAP MM.

                Article
                08-PLPA-RA-1361R2
                10.1371/journal.ppat.1000477
                2698986
                19578432
                2dfb8d77-11fb-4f9e-9b00-567ce39c7213
                Santiviago et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 November 2008
                : 15 May 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Biotechnology
                Cell Biology/Microbial Growth and Development
                Genetics and Genomics/Disease Models
                Genetics and Genomics/Functional Genomics
                Genetics and Genomics/Gene Function
                Genetics and Genomics/Genetics of Disease
                Infectious Diseases/Bacterial Infections
                Microbiology/Cellular Microbiology and Pathogenesis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article