17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LOFAR Sparse Image Reconstruction

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context. The LOFAR Radio Telescope is a giant digital phased array interferometer with multiple antennas gathered in stations placed throughout Europe. As other interferometers, it provides a discrete set of measured Fourier components of the sky brightness. With these samples, recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by different deconvolution and minimization methods. Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and "compressed sensing" theory, which supports sparse recovery methods to reconstruct an image from the measured visibilities. We aimed at the implementation and at the scientific validation of one of these methods. Methods. We evaluated the photometric and resolution performance of the sparse recovery method in the framework of the LOFAR instrument on simulated and real data. Results. We have implemented a sparse recovery method in the standard LOFAR imaging tools, allowing us to compare the reconstructed images from both simulated and real data with images obtained from classical methods such as CLEAN or MS-CLEAN. Conclusions.We show that i) sparse recovery performs as well as CLEAN in recovering the flux of point sources, ii) performs much better on extended objects (the root mean square error is reduced by a factor up to 10), and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN map. Applied to a real LOFAR dataset, the sparse recovery has been validated with the correct photometry and realistic recovered structures of Cygnus A, as compared to other methods. Sparse recovery has been implemented as an image recovery method for the LOFAR Radio Telescope and it can be used for other radio interferometers.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: not found
          • Article: not found

          Compressed sensing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Multi-Scale CLEAN deconvolution of radio synthesis images

            Radio synthesis imaging is dependent upon deconvolution algorithms to counteract the sparse sampling of the Fourier plane. These deconvolution algorithms find an estimate of the true sky brightness from the necessarily incomplete sampled visibility data. The most widely used radio synthesis deconvolution method is the CLEAN algorithm of Hogbom. This algorithm works extremely well for collections of point sources and surprisingly well for extended objects. However, the performance for extended objects can be improved by adopting a multi-scale approach. We describe and demonstrate a conceptually simple and algorithmically straightforward extension to CLEAN that models the sky brightness by the summation of components of emission having different size scales. While previous multiscale algorithms work sequentially on decreasing scale sizes, our algorithm works simultaneously on a range of specified scales. Applications to both real and simulated data sets are given.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The non-coplanar baselines effect in radio interferometry: The W-Projection algorithm

              We consider a troublesome form of non-isoplanatism in synthesis radio telescopes: non-coplanar baselines. We present a novel interpretation of the non-coplanar baselines effect as being due to differential Fresnel diffraction in the neighborhood of the array antennas. We have developed a new algorithm to deal with this effect. Our new algorithm, which we call "W-projection", has markedly superior performance compared to existing algorithms. At roughly equivalent levels of accuracy, W-projection can be up to an order of magnitude faster than the corresponding facet-based algorithms. Furthermore, the precision of result is not tightly coupled to computing time. W-projection has important consequences for the design and operation of the new generation of radio telescopes operating at centimeter and longer wavelengths.
                Bookmark

                Author and article information

                Journal
                2014-06-27
                Article
                1406.7242
                2dffa17b-ee0c-4878-997d-2dd1f056c682

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                21 pages, 9 figures
                astro-ph.IM

                Instrumentation & Methods for astrophysics
                Instrumentation & Methods for astrophysics

                Comments

                Comment on this article