109
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid.

          Methodology/Finding

          Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity.

          Conclusions/Significance

          After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health

          Background Recent declines in honey bees for crop pollination threaten fruit, nut, vegetable and seed production in the United States. A broad survey of pesticide residues was conducted on samples from migratory and other beekeepers across 23 states, one Canadian province and several agricultural cropping systems during the 2007–08 growing seasons. Methodology/Principal Findings We have used LC/MS-MS and GC/MS to analyze bees and hive matrices for pesticide residues utilizing a modified QuEChERS method. We have found 121 different pesticides and metabolites within 887 wax, pollen, bee and associated hive samples. Almost 60% of the 259 wax and 350 pollen samples contained at least one systemic pesticide, and over 47% had both in-hive acaricides fluvalinate and coumaphos, and chlorothalonil, a widely-used fungicide. In bee pollen were found chlorothalonil at levels up to 99 ppm and the insecticides aldicarb, carbaryl, chlorpyrifos and imidacloprid, fungicides boscalid, captan and myclobutanil, and herbicide pendimethalin at 1 ppm levels. Almost all comb and foundation wax samples (98%) were contaminated with up to 204 and 94 ppm, respectively, of fluvalinate and coumaphos, and lower amounts of amitraz degradates and chlorothalonil, with an average of 6 pesticide detections per sample and a high of 39. There were fewer pesticides found in adults and brood except for those linked with bee kills by permethrin (20 ppm) and fipronil (3.1 ppm). Conclusions/Significance The 98 pesticides and metabolites detected in mixtures up to 214 ppm in bee pollen alone represents a remarkably high level for toxicants in the brood and adult food of this primary pollinator. This represents over half of the maximum individual pesticide incidences ever reported for apiaries. While exposure to many of these neurotoxicants elicits acute and sublethal reductions in honey bee fitness, the effects of these materials in combinations and their direct association with CCD or declining bee health remains to be determined.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insect glutathione transferases and insecticide resistance.

            Glutathione transferases (GSTs) are a diverse family of enzymes found ubiquitously in aerobic organisms. They play a central role in the detoxification of both endogenous and xenobiotic compounds and are also involved in intracellular transport, biosynthesis of hormones and protection against oxidative stress. Interest in insect GSTs has primarily focused on their role in insecticide resistance. GSTs can metabolize insecticides by facilitating their reductive dehydrochlorination or by conjugation reactions with reduced glutathione, to produce water-soluble metabolites that are more readily excreted. In addition, they contribute to the removal of toxic oxygen free radical species produced through the action of pesticides. Annotation of the Anopheles gambiae and Drosophila melanogaster genomes has revealed the full extent of this enzyme family in insects. This mini review describes the insect GST enzyme family, focusing specifically on their role in conferring insecticide resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee

              The honeybee genome has substantially fewer protein coding genes (≈ 11 000 genes) than Drosophila melanogaster (≈ 13 500) and Anopheles gambiae (≈ 14 000). Some of the most marked differences occur in three superfamilies encoding xenobiotic detoxifying enzymes. Specifically there are only about half as many glutathione-S-transferases (GSTs), cytochrome P450 monooxygenases (P450s) and carboxyl/cholinesterases (CCEs) in the honeybee. This includes 10-fold or greater shortfalls in the numbers of Delta and Epsilon GSTs and CYP4 P450s, members of which clades have been recurrently associated with insecticide resistance in other species. These shortfalls may contribute to the sensitivity of the honeybee to insecticides. On the other hand there are some recent radiations in CYP6, CYP9 and certain CCE clades in A. mellifera that could be associated with the evolution of the hormonal and chemosensory processes underpinning its highly organized eusociality.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                28 June 2011
                : 6
                : 6
                : e21550
                Affiliations
                [1 ]Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
                [2 ]CNRS, UMR 6023, LMGE, Aubière, France
                [3 ]INRA, UMR 406 Abeilles & Environnement, Laboratoire de Toxicologie Environnementale, Site Agroparc, Avignon, France
                Tulane University School of Public Health and Tropical Medicine, United States of America
                Author notes

                Conceived and designed the experiments: CV NB HEA LPB FD. Performed the experiments: CV MD JA RF BV J-LB. Analyzed the data: CV DGB CT LPB FD. Contributed reagents/materials/analysis tools: MD JA RF BV DGB. Wrote the paper: CV DGB LPB FD.

                Article
                PONE-D-11-04998
                10.1371/journal.pone.0021550
                3125288
                21738706
                2e08df32-a545-4f09-a88f-63d276eb7f27
                Vidau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 March 2011
                : 1 June 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Microbiology
                Parasitology
                Parasite Groups
                Emerging Infectious Diseases
                Host-Pathogen Interaction
                Microbial Control
                Microbial Pathogens
                Pathogenesis
                Toxicology
                Neurotoxicology
                Toxic Agents

                Uncategorized
                Uncategorized

                Comments

                Comment on this article