0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microhabitat selection by small mammals in response to fire

      , , ,
      Australian Journal of Zoology
      CSIRO Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding how fire influences animal behaviour, such as movement and resource selection, is important for ecosystem management because it can improve our capacity to predict how species will respond. We assessed microhabitat selection by two small mammals, the bush rat (Rattus fuscipes) and agile antechinus (Antechinus agilis), in response to a low intensity prescribed fire. We used spool and line tracking and touch pole vegetation surveys to quantify microhabitat selection along 21 trails for bush rats and 22 for antechinuses before and after fire. In unburnt areas, bush rats showed positive selection for sedges, logs, and habitat complexity, with selection further increasing in burnt areas for sedges, ferns, shrubs, habitat complexity and unburnt patches. Agile antechinuses showed no significant microhabitat selection in unburnt or burnt areas and no change in response to fire. Their lack of response to ground fires may be due, partially, to their scansorial behaviour and use of tree hollows as refuge sites. Strong selection by bush rats for small unburnt patches suggests that even low intensity, patchy fires such as planned burns can impact bush rats and that high burn patchiness may help bush rats persist in recently burnt areas. Future fire planning should consider both behavioural and population responses of animals to fire.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Climate-induced variations in global wildfire danger from 1979 to 2013

          Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km2 (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bias reduction of maximum likelihood estimates

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Learning to coexist with wildfire.

              The impacts of escalating wildfire in many regions - the lives and homes lost, the expense of suppression and the damage to ecosystem services - necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Australian Journal of Zoology
                Aust. J. Zool.
                CSIRO Publishing
                0004-959X
                1446-5698
                2022
                February 11 2022
                : 69
                : 3
                : 67-79
                Article
                10.1071/ZO21022
                2e15f8a4-a70a-467b-9fbf-4720ad345424
                © 2022
                History

                Comments

                Comment on this article