+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii.

      Infection and Immunity

      Animals, B-Lymphocytes, physiology, Complement C5, Female, Immune Sera, immunology, Interferon-gamma, biosynthesis, Male, Mice, Receptors, Fc, Toxoplasmosis, Animal, Vaccination, Virulence

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          T lymphocytes and gamma interferon (IFN-gamma) are known mediators of immune resistance to Toxoplasma gondii infection, but whether B cells also play an important role is not clear. We have investigated this issue using B-cell-deficient (muMT) mice. If vaccinated with attenuated T. gondii tachyzoites, muMT mice are susceptible to a challenge intraperitoneal infection with highly virulent tachyzoites that similarly vaccinated B-cell-sufficient mice resist. Susceptibility is evidenced by increased numbers of parasites at the challenge infection site and by extensive mortality. The susceptibility of B-cell-deficient mice does not appear to be caused by deficient T-cell functions or diminished capacity of vaccinated and challenged B-cell-deficient mice to produce IFN-gamma. Administration of Toxoplasma-immune serum, but not nonimmune serum, to vaccinated B-cell-deficient mice significantly prolongs their survival after challenge with virulent tachyzoites. Vaccinated mice lacking Fc receptors or the fifth component of complement resist a challenge infection, suggesting that neither Fc-receptor-dependent phagocytosis of antibody-coated tachyzoites nor antibody-dependent cellular cytotoxicity nor antibody-and-complement-dependent lysis of tachyzoites is a crucial mechanism of resistance. However, Toxoplasma-immune serum effectively inhibits the infection of host cells by tachyzoites in vitro. Together, the results support the hypothesis that B cells are required for vaccination-induced resistance to virulent tachyzoites in order to produce antibodies and that antibodies may function protectively in vivo by blocking infection of host cells by tachyzoites.

          Related collections

          Author and article information



          Comment on this article