17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Growth of high-quality covalent organic framework nanosheets at the interface of two miscible organic solvents

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A facile approach for growth of COF nanosheets at the interface of two miscible organic solvents is designed and employed.

          Abstract

          Stronger covalent bonds between monomers, relatively more complex growth processes (polymerization, crystallization, assembly, etc.) and π–π stacking interactions between adjacent layers make it extremely difficult to obtain highly ordered crystalline 2D covalent organic framework (COF) nanosheets. So more effective solutions have to be developed to push the methods reported so far beyond their inherent limitations. Herein, we report the first example of growing high-quality 2D COF nanosheets (NS-COF) at the interface of two miscible organic solvents. The novel approach, which is named as a buffering interlayer interface (BII) method, can be achieved by simply adding a low-density solvent interlayer, as a buffer layer, between the two miscible main solvents based on the self-propelled directed motion of the interface driven by the density differences among the solvents involved. The as-synthesized NS-COF exhibits a super-large size and a relatively regular shape with a smooth surface, which have not been observed before. The proposed strategy offers a facile and effective approach for growing well-structured 2D COF nanosheets and also other kinds of nanosheets.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Interpretation of Raman spectra of disordered and amorphous carbon

          Physical Review B, 61(20), 14095-14107
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications.

            Covalent organic-frameworks (COFs) are an emerging class of porous and ordered materials formed by condensation reactions of organic molecules. Recently, the Schiff-base chemistry or dynamic imine-chemistry has been widely explored for the synthesis of COFs. The main reason for this new tendency is based on their high chemical stability, porosity and crystallinity in comparison to previously reported COFs. This critical review article summarizes the current state-of-the-art on the design principles and synthetic strategies toward COFs based on Schiff-base chemistry, collects and rationalizes their physicochemical properties, as well as aims to provide perspectives of potential applications which are at the forefront of research in materials science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II).

              Heavy metal ions are highly toxic and widely spread as environmental pollutants. New strategies are being developed to simultaneously detect and remove these toxic ions. Herein, we take the intrinsic advantage of covalent organic frameworks (COFs) and develop fluorescent COFs for sensing applications. As a proof-of-concept, a thioether-functionalized COF material, COF-LZU8, was "bottom-up" integrated with multifunctionality for the selective detection and facile removal of mercury(II): the π-conjugated framework as the signal transducer, the evenly and densely distributed thioether groups as the Hg(2+) receptor, the regular pores facilitating the real-time detection and mass transfer, together with the robust COF structure for recycle use. The excellent sensing performance of COF-LZU8 was achieved in terms of high sensitivity, excellent selectivity, easy visibility, and real-time response. Meanwhile, the efficient removal of Hg(2+) from water and the recycling of COF-LZU8 offers the possibility for practical applications. In addition, X-ray photoelectron spectroscopy and solid-state NMR investigations verified the strong and selective interaction between Hg(2+) and the thioether groups of COF-LZU8. This research not only demonstrates the utilization of fluorescent COFs for both sensing and removal of metal ions but also highlights the facile construction of functionalized COFs for environmental applications.
                Bookmark

                Author and article information

                Journal
                NHAOAW
                Nanoscale Horizons
                Nanoscale Horiz.
                Royal Society of Chemistry (RSC)
                2055-6756
                2055-6764
                2018
                2018
                : 3
                : 2
                : 205-212
                Affiliations
                [1 ]College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education
                [2 ]Chengdu
                [3 ]P. R. China
                Article
                10.1039/C7NH00172J
                2e1ab930-f2c5-42d0-9a25-47a1addcb360
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article