148
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Addition of reversine to dividing cells ejects Mad1 and the RZZ complex from unattached kinetochores and prevents resolution of incorrect chromosome–microtubule attachments (see also related papers by Hewitt et al. and Maciejowski et al. in this issue).

          Abstract

          The catalytic activity of the MPS1 kinase is crucial for the spindle assembly checkpoint and for chromosome biorientation on the mitotic spindle. We report that the small molecule reversine is a potent mitotic inhibitor of MPS1. Reversine inhibits the spindle assembly checkpoint in a dose-dependent manner. Its addition to mitotic HeLa cells causes the ejection of Mad1 and the ROD–ZWILCH–ZW10 complex, both of which are important for the spindle checkpoint, from unattached kinetochores. By using reversine, we also demonstrate that MPS1 is required for the correction of improper chromosome–microtubule attachments. We provide evidence that MPS1 acts downstream from the AURORA B kinase, another crucial component of the error correction pathway. Our experiments describe a very useful tool to interfere with MPS1 activity in human cells. They also shed light on the relationship between the error correction pathway and the spindle checkpoint and suggest that these processes are coregulated and are likely to share at least a subset of their catalytic machinery.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          The spindle-assembly checkpoint in space and time.

          In eukaryotes, the spindle-assembly checkpoint (SAC) is a ubiquitous safety device that ensures the fidelity of chromosome segregation in mitosis. The SAC prevents chromosome mis-segregation and aneuploidy, and its dysfunction is implicated in tumorigenesis. Recent molecular analyses have begun to shed light on the complex interaction of the checkpoint proteins with kinetochores--structures that mediate the binding of spindle microtubules to chromosomes in mitosis. These studies are finally starting to reveal the mechanisms of checkpoint activation and silencing during mitotic progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphate-binding tag, a new tool to visualize phosphorylated proteins.

            We introduce two methods for the visualization of phosphorylated proteins using alkoxide-bridged dinuclear metal (i.e. Zn(2+) or Mn(2+)) complexes as novel phosphate-binding tag (Phos-tag) molecules. Both Zn(2+)- and Mn(2+)-Phos-tag molecules preferentially capture phosphomonoester dianions bound to Ser, Thr, and Tyr residues. One method is based on an ECL system using biotin-pendant Zn(2+)-Phos-tag and horseradish peroxidase-conjugated streptavidin. We demonstrate the electroblotting analyses of protein phosphorylation status by the phosphate-selective ECL signals. Another method is based on the mobility shift of phosphorylated proteins in SDS-PAGE with polyacrylamide-bound Mn(2+)-Phos-tag. Phosphorylated proteins in the gel are visualized as slower migration bands compared with corresponding dephosphorylated proteins. We demonstrate the kinase and phosphatase assays by phosphate affinity electrophoresis (Mn(2+)-Phos-tag SDS-PAGE).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The conserved KMN network constitutes the core microtubule-binding site of the kinetochore.

              The microtubule-binding interface of the kinetochore is of central importance in chromosome segregation. Although kinetochore components that stabilize, translocate on, and affect the polymerization state of microtubules have been identified, none have proven essential for kinetochore-microtubule interactions. Here, we examined the conserved KNL-1/Mis12 complex/Ndc80 complex (KMN) network, which is essential for kinetochore-microtubule interactions in vivo. We identified two distinct microtubule-binding activities within the KMN network: one associated with the Ndc80/Nuf2 subunits of the Ndc80 complex, and a second in KNL-1. Formation of the complete KMN network, which additionally requires the Mis12 complex and the Spc24/Spc25 subunits of the Ndc80 complex, synergistically enhances microtubule-binding activity. Phosphorylation by Aurora B, which corrects improper kinetochore-microtubule connections in vivo, reduces the affinity of the Ndc80 complex for microtubules in vitro. Based on these findings, we propose that the conserved KMN network constitutes the core microtubule-binding site of the kinetochore.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                12 July 2010
                : 190
                : 1
                : 73-87
                Affiliations
                [1 ]Department of Experimental Oncology, European Institute of Oncology, I-20139 Milan, Italy
                [2 ]Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, England, UK
                [3 ]Center for Genetic Engineering (CEINGE), Naples 80131, Italy
                Author notes
                Correspondence to Andrea Musacchio: andrea.musacchio@ 123456ifom-ieo-campus.it

                A.M. D'Alise's present address is Dept. of Pathology, Harvard University Medical School, Boston, MA.

                Article
                201001036
                10.1083/jcb.201001036
                2911657
                20624901
                2e1ebd04-861e-4f5e-9daf-21f0f5165975
                © 2010 Santaguida et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 8 January 2010
                : 5 June 2010
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article