+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Plasma membrane receptors for the cancer-regulating progesterone metabolites, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-4-pregnen-20-one in MCF-7 breast cancer cells.

      Biochemical and Biophysical Research Communications
      20-alpha-Dihydroprogesterone, analogs & derivatives, metabolism, pharmacology, 5-alpha-Dihydroprogesterone, Binding Sites, drug effects, Breast Neoplasms, pathology, Cell Fractionation, Cell Membrane, Cell Nucleus, Cytosol, Estradiol, Estrogen Antagonists, Female, Humans, Kinetics, Pregnanediones, Progesterone, Receptors, Cell Surface, Substrate Specificity, Thermodynamics, Tumor Cells, Cultured

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Recent observations indicate that the progesterone metabolite, 5alpha-pregnane-3,20-dione (5alphaP), which is produced at higher levels in tumorous breast tissue, promotes cell proliferation and detachment, whereas 3alpha-hydroxy-4-pregnen-20-one (3alphaHP), which is produced at higher levels in nontumorous breast tissue, suppresses proliferation and detachment of MCF-7 breast cancer cells. The objective of the current study was to determine the presence and characteristics of binding sites for these endogenous putative cancer-regulating steroid hormones. Radiolabeled 5alphaP and 3alphaHP were used in radioligand binding assays on MCF-7 cell (membrane, cytosolic, and nuclear) fractions. Binding of [(3)H]5alphaP and [(3)H]3alphaHP was observed only in the plasma membrane fraction, whereas estradiol binding sites were confirmed in the cytosolic and nuclear fractions. The respective membrane binding sites exhibited specificity for the 5alphaP and 3alphaHP ligands with no appreciable displacement at 200- to 500-fold excess by other steroids. The association rate constants were calculated as 0. 107/min and 0.0089/min and the dissociation rate constants were 0. 049 9 and 0.011 for 5alphaP and 3alphaHP, respectively. Saturation analyses indicated single classes of molecules with dissociation constants of 4.5 and 4.87 nM and receptor densities of 486 and 629 fmol/mg protein, respectively, for 5alphaP and 3alphaHP. Exposure of MCF-7 cells to estradiol for 1, 24, 48, and 72 h resulted in 2.3, 4. 2-, 2.99-, and 1.7-fold increases, respectively, in 5alphaP receptor density. 3alphaHP resulted in partial suppression of the estradiol-mediated increase in 5alphaP receptor density. This is the first report of receptors for the progesterone metabolites, 5alphaP and 3alphaHP, of their occurrence in breast cancer cell membranes, and of the induction of 5alphaP receptors by estradiol. The results provide further support for the potential importance of progesterone metabolites in breast cancer. Copyright 2000 Academic Press.

          Related collections

          Author and article information


          Comment on this article