27
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The healthiness and sustainability of national and global food based dietary guidelines: modelling study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To analyse the health and environmental implications of adopting national food based dietary guidelines (FBDGs) at a national level and compared with global health and environmental targets.

          Design

          Modelling study.

          Setting

          85 countries.

          Participants

          Population of 85 countries.

          Main outcome measures

          A graded coding method was developed and used to extract quantitative recommendations from 85 FBDGs. The health and environmental impacts of these guidelines were assessed by using a comparative risk assessment of deaths from chronic diseases and a set of country specific environmental footprints for greenhouse gas emissions, freshwater use, cropland use, and fertiliser application. For comparison, the impacts of adopting the global dietary recommendations of the World Health Organization and the EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems were also analysed. Each guideline’s health and sustainability implications were assessed by modelling its adoption at both the national level and globally, and comparing the impacts to global health and environmental targets, including the Action Agenda on Non-Communicable Diseases, the Paris Climate Agreement, the Aichi biodiversity targets related to land use, and the sustainable development goals and planetary boundaries related to freshwater use and fertiliser application.

          Results

          Adoption of national FBDGs was associated with reductions in premature mortality of 15% on average (95% uncertainty interval 13% to 16%) and mixed changes in environmental resource demand, including a reduction in greenhouse gas emissions of 13% on average (regional range −34% to 35%). When universally adopted globally, most of the national guidelines (83, 98%) were not compatible with at least one of the global health and environmental targets. About a third of the FBDGs (29, 34%) were incompatible with the agenda on non-communicable diseases, and most (57 to 74, 67% to 87%) were incompatible with the Paris Climate Agreement and other environmental targets. In comparison, adoption of the WHO recommendations was associated with similar health and environmental changes, whereas adoption of the EAT-Lancet recommendations was associated with 34% greater reductions in premature mortality, more than three times greater reductions in greenhouse gas emissions, and general attainment of the global health and environmental targets. As an example, the FBDGs of the UK, US, and China were incompatible with the climate change, land use, freshwater, and nitrogen targets, and adopting guidelines in line with the EAT-Lancet recommendation could increase the number of avoided deaths from 78 000 (74 000 to 81 000) to 104 000 (96 000 to 112 000) in the UK, from 480 000 (445 000 to 516 000) to 585 000 (523 000 to 646 000) in the USA, and from 1 149 000 (1 095 000 to 1 204 000) to 1 802 000 (1 664 000 to 1 941 000) in China.

          Conclusions

          This analysis suggests that national guidelines could be both healthier and more sustainable. Providing clearer advice on limiting in most contexts the consumption of animal source foods, in particular beef and dairy, was found to have the greatest potential for increasing the environmental sustainability of dietary guidelines, whereas increasing the intake of whole grains, fruits and vegetables, nuts and seeds, and legumes, reducing the intake of red and processed meat, and highlighting the importance of attaining balanced energy intake and weight levels were associated with most of the additional health benefits. The health results were based on observational data and assuming a causal relation between dietary risk factors and health outcomes. The certainty of evidence for these relations is mostly graded as moderate in existing meta-analyses.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis and valuation of the health and climate change cobenefits of dietary change.

          What we eat greatly influences our personal health and the environment we all share. Recent analyses have highlighted the likely dual health and environmental benefits of reducing the fraction of animal-sourced foods in our diets. Here, we couple for the first time, to our knowledge, a region-specific global health model based on dietary and weight-related risk factors with emissions accounting and economic valuation modules to quantify the linked health and environmental consequences of dietary changes. We find that the impacts of dietary changes toward less meat and more plant-based diets vary greatly among regions. The largest absolute environmental and health benefits result from diet shifts in developing countries whereas Western high-income and middle-income countries gain most in per capita terms. Transitioning toward more plant-based diets that are in line with standard dietary guidelines could reduce global mortality by 6-10% and food-related greenhouse gas emissions by 29-70% compared with a reference scenario in 2050. We find that the monetized value of the improvements in health would be comparable with, or exceed, the value of the environmental benefits although the exact valuation method used considerably affects the estimated amounts. Overall, we estimate the economic benefits of improving diets to be 1-31 trillion US dollars, which is equivalent to 0.4-13% of global gross domestic product (GDP) in 2050. However, significant changes in the global food system would be necessary for regional diets to match the dietary patterns studied here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review

            Food production is a major driver of greenhouse gas (GHG) emissions, water and land use, and dietary risk factors are contributors to non-communicable diseases. Shifts in dietary patterns can therefore potentially provide benefits for both the environment and health. However, there is uncertainty about the magnitude of these impacts, and the dietary changes necessary to achieve them. We systematically review the evidence on changes in GHG emissions, land use, and water use, from shifting current dietary intakes to environmentally sustainable dietary patterns. We find 14 common sustainable dietary patterns across reviewed studies, with reductions as high as 70–80% of GHG emissions and land use, and 50% of water use (with medians of about 20–30% for these indicators across all studies) possible by adopting sustainable dietary patterns. Reductions in environmental footprints were generally proportional to the magnitude of animal-based food restriction. Dietary shifts also yielded modest benefits in all-cause mortality risk. Our review reveals that environmental and health benefits are possible by shifting current Western diets to a variety of more sustainable dietary patterns.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake.

              We pooled data from 5 large validation studies of dietary self-report instruments that used recovery biomarkers as references to clarify the measurement properties of food frequency questionnaires (FFQs) and 24-hour recalls. The studies were conducted in widely differing US adult populations from 1999 to 2009. We report on total energy, protein, and protein density intakes. Results were similar across sexes, but there was heterogeneity across studies. Using a FFQ, the average correlation coefficients for reported versus true intakes for energy, protein, and protein density were 0.21, 0.29, and 0.41, respectively. Using a single 24-hour recall, the coefficients were 0.26, 0.40, and 0.36, respectively, for the same nutrients and rose to 0.31, 0.49, and 0.46 when three 24-hour recalls were averaged. The average rate of under-reporting of energy intake was 28% with a FFQ and 15% with a single 24-hour recall, but the percentages were lower for protein. Personal characteristics related to under-reporting were body mass index, educational level, and age. Calibration equations for true intake that included personal characteristics provided improved prediction. This project establishes that FFQs have stronger correlations with truth for protein density than for absolute protein intake, that the use of multiple 24-hour recalls substantially increases the correlations when compared with a single 24-hour recall, and that body mass index strongly predicts under-reporting of energy and protein intakes.
                Bookmark

                Author and article information

                Contributors
                Role: senior researcher
                Role: bachelor student
                Role: researcher
                Role: doctoral student
                Role: senior research associate
                Role: professor
                Role: professor
                Role: associate professor
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2020
                15 July 2020
                : 370
                : m2322
                Affiliations
                [1 ]Oxford Martin Programme on the Future of Food and Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
                [2 ]School of Medicine, University of Adelaide, Adelaide, SA, Australia
                [3 ]Department of Zoology and School of Geography and the Environment, University of Oxford, Oxford, UK
                [4 ]Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
                [5 ]Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
                [6 ]Oxford Martin Programme on the Future of Food, NIHR Biomedical Research Centre at Oxford, and Nuffield Department of Population Health, University of Oxford, Oxford, UK
                Author notes
                Correspondence to: M Springmann marco.springmann@ 123456ndph.ox.ac.uk
                Author information
                https://orcid.org/0000-0001-6028-5712
                Article
                sprm054404
                10.1136/bmj.m2322
                7362232
                32669369
                2e1f516f-1962-44ed-9731-317b85635978
                © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 May 2020
                Categories
                Research

                Medicine
                Medicine

                Comments

                Comment on this article