10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extracellular HMGB1 as a therapeutic target in inflammatory diseases

      1 , 2 , 3
      Expert Opinion on Therapeutic Targets
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion.

          High Mobility Group 1 protein (HMGB1) is a chromatin component that, when leaked out by necrotic cells, triggers inflammation. HMGB1 can also be secreted by activated monocytes and macrophages, and functions as a late mediator of inflammation. Secretion of a nuclear protein requires a tightly controlled relocation program. We show here that in all cells HMGB1 shuttles actively between the nucleus and cytoplasm. Monocytes and macrophages acetylate HMGB1 extensively upon activation with lipopolysaccharide; moreover, forced hyperacetylation of HMGB1 in resting macrophages causes its relocalization to the cytosol. Cytosolic HMGB1 is then concentrated by default into secretory lysosomes, and secreted when monocytic cells receive an appropriate second signal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reversing established sepsis with antagonists of endogenous high-mobility group box 1.

            Despite significant advances in intensive care therapy and antibiotics, severe sepsis accounts for 9% of all deaths in the United States annually. The pathological sequelae of sepsis are characterized by a systemic inflammatory response, but experimental therapeutics that target specific early inflammatory mediators [tumor necrosis factor (TNF) and IL-1beta] have not proven efficacious in the clinic. We recently identified high mobility group box 1 (HMGB1) as a late mediator of endotoxin-induced lethality that exhibits significantly delayed kinetics relative to TNF and IL-1beta. Here, we report that serum HMGB1 levels are increased significantly in a standardized model of murine sepsis, beginning 18 h after surgical induction of peritonitis. Specific inhibition of HMGB1 activity [with either anti-HMGB1 antibody (600 microg per mouse) or the DNA-binding A box (600 microg per mouse)] beginning as late as 24 h after surgical induction of peritonitis significantly increased survival (nonimmune IgG-treated controls = 28% vs. anti-HMGB1 antibody group = 72%, P < 0.03; GST control protein = 28% vs. A box = 68%, P < 0.03). Animals treated with either HMGB1 antagonist were protected against the development of organ injury, as evidenced by improved levels of serum creatinine and blood urea nitrogen. These observations demonstrate that specific inhibition of endogenous HMGB1 therapeutically reverses lethality of established sepsis indicating that HMGB1 inhibitors can be administered in a clinically relevant time frame.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway.

              HMGB1, a non-histone nuclear factor, acts extracellularly as a mediator of delayed endotoxin lethality, which raises the question of how a nuclear protein can reach the extracellular space. We show that activation of monocytes results in the redistribution of HMGB1 from the nucleus to cytoplasmic organelles, which display ultrastructural features of endolysosomes. HMGB1 secretion is induced by stimuli triggering lysosome exocytosis. The early mediator of inflammation interleukin (IL)-1beta is also secreted by monocytes through a non-classical pathway involving exocytosis of secretory lysosomes. However, in keeping with their respective role of early and late inflammatory factors, IL-1beta and HMGB1 respond at different times to different stimuli: IL-1beta secretion is induced earlier by ATP, autocrinally released by monocytes soon after activation; HMGB1 secretion is triggered by lysophosphatidylcholine, generated later in the inflammation site. Thus, in monocytes, non-classical secretion can occur through vescicle compartments that are at least partially distinct.
                Bookmark

                Author and article information

                Journal
                Expert Opinion on Therapeutic Targets
                Expert Opinion on Therapeutic Targets
                Informa UK Limited
                1472-8222
                1744-7631
                February 15 2018
                March 04 2018
                February 15 2018
                March 04 2018
                : 22
                : 3
                : 263-277
                Affiliations
                [1 ] Department of Women’s and Children’s Health, Center for Molecular Medicine (CMM) L8:04, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
                [2 ] Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
                [3 ] Unit of Rheumatology, Department of Medicine, Center for Molecular Medicine (CMM) L, 8:04, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
                Article
                10.1080/14728222.2018.1439924
                29447008
                2e21d3b9-0e91-4448-8e10-fd258e6163a6
                © 2018
                History

                Comments

                Comment on this article