0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prioritization of Erosion Hotspot Microwatersheds for Conservation Planning Using GIS and Remote Sensing Techniques in Antsokia-Gemiza District of North Shewa Zone, Ethiopia

      1 , 1 , 1
      Applied and Environmental Soil Science
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soil erosion is one of the most severe forms of land degradation, which has a wide range of adverse on-site and off-site impacts in the highlands of Ethiopia in general and in the study area in particular. The objective of this study was to estimate soil erosion, identify and prioritize erosion hotspot microwatersheds in Antsokia-Gemiza district. The Revised Universal Soil Loss Equation (RUSLE) was used to estimate the potential annual soil loss. Geographic Information System (GIS) and remote sensing techniques were used to delineate the microwatersheds, produce the spatial map of all parameters and outputs, and prioritize microwatersheds. Based on the analysis, the potential soil loss of the district ranges from 0 to 240 t·ha−1year−1 with a mean annual soil loss of 43.21 t·ha−1year−1. About 12442.86 ha (33.18%) of the district falls under low and moderate severity classes, and it has a total soil loss not exceeding 11 t·ha−1year−1 (which is an acceptable or tolerable range of soil loss). The rest of the land, which covers 25046.32 ha (66.82%) of the area, falls under high to extremely severe classes (which need prime attention), with soil loss amounts ranging from 11.01 to 240 t·ha−1year−1. For prioritization purposes, the estimated potential soil loss of the district was reclassified into 12 microwatersheds. Based on the amount of soil loss across each microwatershed, MW10, MW9, and MW11 ranked 1st, 2nd, and 3rd with a percentage of 96.3%, 94.36%, and 89.28%, respectively. On the other hand, the total area covered by the existing soil and water conservation practices in the district was 5606.10 ha, of which 3808.06 ha was covered by physical conservation measures, 1305.67 ha of the area was covered by biological conservation measures and 492.37 ha was covered by area closure. Most of the existing soil and water conservation measures were implemented under high to extremely severe erosion classes. The hotspot microwatersheds with higher severity percentages will get higher priority for soil and water conservation intervention. Hence, the integrated results will provide useful information for the decision-making process concerning the erosion susceptibility of microwatersheds. Besides, GIS and remote sensing approaches in the identification and prioritization of erosion hotspot microwatersheds using RUSLE parameters are found to be more appropriate.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes

          The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Physical Basis of the Length-slope Factor in the Universal Soil Loss Equation1

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Environmental and economic costs of soil erosion and conservation benefits.

              Soil erosion is a major environmental threat to the sustainability and productive capacity of agriculture. During the last 40 years, nearly one-third of the world's arable land has been lost by erosion and continues to be lost at a rate of more than 10 million hectares per year. With the addition of a quarter of a million people each day, the world population's food demand is increasing at a time when per capita food productivity is beginning to decline.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Applied and Environmental Soil Science
                Applied and Environmental Soil Science
                Hindawi Limited
                1687-7675
                1687-7667
                June 18 2022
                June 18 2022
                : 2022
                : 1-16
                Affiliations
                [1 ]Department of Natural Resource Management, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
                Article
                10.1155/2022/7869581
                2e25f201-c9e3-4751-a4d7-88e66fd8d24f
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article