33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transportin 3 Promotes a Nuclear Maturation Step Required for Efficient HIV-1 Integration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The HIV/AIDS pandemic is a major global health threat and understanding the detailed molecular mechanisms of HIV replication is critical for the development of novel therapeutics. To replicate, HIV-1 must access the nucleus of infected cells and integrate into host chromosomes, however little is known about the events occurring post-nuclear entry but before integration. Here we show that the karyopherin Transportin 3 (Tnp3) promotes HIV-1 integration in different cell types. Furthermore Tnp3 binds the viral capsid proteins and tRNAs incorporated into viral particles. Interaction between Tnp3, capsid and tRNAs is stronger in the presence of RanGTP, consistent with the possibility that Tnp3 is an export factor for these substrates. In agreement with this interpretation, we found that Tnp3 exports from the nuclei viral tRNAs in a RanGTP-dependent way. Tnp3 also binds and exports from the nuclei some species of cellular tRNAs with a defective 3′CCA end. Depletion of Tnp3 results in a re-distribution of HIV-1 capsid proteins between nucleus and cytoplasm however HIV-1 bearing the N74D mutation in capsid, which is insensitive to Tnp3 depletion, does not show nucleocytoplasmic redistribution of capsid proteins. We propose that Tnp3 promotes HIV-1 infection by displacing any capsid and tRNA that remain bound to the pre-integration complex after nuclear entry to facilitate integration. The results also provide evidence for a novel tRNA nucleocytoplasmic trafficking pathway in human cells.

          Author Summary

          HIV-1, the causative agent of AIDS, is a virus that enters the nucleus of infected cells and must integrate its genome into the host cell DNA. Here we show that efficient HIV-1 integration depends on a host cell factor called Transportin 3. We also show that Transportin 3 can export out of the nucleus the viral capsid proteins and viral transfer RNAs (tRNAs) and that this activity is important for HIV-1 integration. We propose that Transportin 3 facilitates a maturation process inside the nucleus by removing remaining capsid proteins and tRNAs still bound to the virus. The mature viral complex, free of any bulky component, can then more easily integrate. Transportin 3 also export certain cellular tRNAs out of the nucleus, presumably as a way to control cell metabolism. By feeding into this tRNA shuttling pathway, HIV-1 can complete its life cycle. Our work sheds new light into the biology of HIV-1 and points to the existence of a new pathway in human cells to shuttle certain tRNAs between nucleus and cytoplasm.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Nuclear export of microRNA precursors.

          MicroRNAs (miRNAs), which function as regulators of gene expression in eukaryotes, are processed from larger transcripts by sequential action of nuclear and cytoplasmic ribonuclease III-like endonucleases. We show that Exportin-5 (Exp5) mediates efficient nuclear export of short miRNA precursors (pre-miRNAs) and that its depletion by RNA interference results in reduced miRNA levels. Exp5 binds correctly processed pre-miRNAs directly and specifically, in a Ran guanosine triphosphate-dependent manner, but interacts only weakly with extended pre-miRNAs that yield incorrect miRNAs when processed by Dicer in vitro. Thus, Exp5 is key to miRNA biogenesis and may help coordinate nuclear and cytoplasmic processing steps.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.

            A retroviral vector system based on the human immunodeficiency virus (HIV) was developed that, in contrast to a murine leukemia virus-based counterpart, transduced heterologous sequences into HeLa cells and rat fibroblasts blocked in the cell cycle, as well as into human primary macrophages. Additionally, the HIV vector could mediate stable in vivo gene transfer into terminally differentiated neurons. The ability of HIV-based viral vectors to deliver genes in vivo into nondividing cells could increase the applicability of retroviral vectors in human gene therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The molecular architecture of the nuclear pore complex.

              Nuclear pore complexes (NPCs) are proteinaceous assemblies of approximately 50 MDa that selectively transport cargoes across the nuclear envelope. To determine the molecular architecture of the yeast NPC, we collected a diverse set of biophysical and proteomic data, and developed a method for using these data to localize the NPC's 456 constituent proteins (see the accompanying paper). Our structure reveals that half of the NPC is made up of a core scaffold, which is structurally analogous to vesicle-coating complexes. This scaffold forms an interlaced network that coats the entire curved surface of the nuclear envelope membrane within which the NPC is embedded. The selective barrier for transport is formed by large numbers of proteins with disordered regions that line the inner face of the scaffold. The NPC consists of only a few structural modules that resemble each other in terms of the configuration of their homologous constituents, the most striking of these being a 16-fold repetition of 'columns'. These findings provide clues to the evolutionary origins of the NPC.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2011
                August 2011
                25 August 2011
                : 7
                : 8
                : e1002194
                Affiliations
                [1 ]Wohl Virion Centre, Division of Infection & Immunity, University College London, London, United Kingdom
                [2 ]MRC Centre for Medical Molecular Virology, Division of Infection & Immunity, University College London, London, United Kingdom
                [3 ]Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                Conceived and designed the experiments: LZ ES CJ WJ SAC AF. Performed the experiments: LZ ES CJ SAC AF. Analyzed the data: LZ ES CJ AF. Contributed reagents/materials/analysis tools: SAC WJ. Wrote the paper: AF.

                Article
                PPATHOGENS-D-11-01022
                10.1371/journal.ppat.1002194
                3161976
                21901095
                2e2b7104-c56a-41d7-8fc5-bb43de9fa6e4
                Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 May 2011
                : 21 June 2011
                Page count
                Pages: 19
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                RNA
                RNA transport
                Cofactors
                Medicine
                Infectious Diseases
                Viral Diseases
                HIV
                Retrovirology and HIV immunopathogenesis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article