Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

The ground beetle genus Bembidion Latreille in Baltic amber: Review of preserved specimens and first 3D reconstruction of endophallic structures using X-ray microscopy (Coleoptera, Carabidae, Bembidiini)

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      AbstractThe ground beetle genus Bembidion is a highly diverse group of small predators with more than 1.200 described extant species. In contrast, only two representatives of Bembidion are known from the amber fossil record and their position within this mega-diverse genus is dubious. Here, we address the taxonomic position of these two extinct Bembidion species (B. succini Giebel, 1856 and B. christelae Ortuño & Arillo, 2010). Based on the insufficient description and the missing type specimen, B. succini, nomen dubium, cannot be assigned to the genus Bembidion and/or to the tribe Bembidiini with certainty. The subgenus Archaeophilochthus Ortuño & Arillo, 2010 was erected for the second extinct species, B. christelae, based on external characters. However, this species seems indistinguishable to members of the earlier described subgenus Philochthemphanes Netolitzky, 1943 which comprises about extant 10 species distributed in East and Southeast Asia. Furthermore, we describe two new species, B. bukejsi sp. n. and B. alekseevi sp. n., from the Eocene Baltic amber using X-ray microscopy. Based on external and genital morphology including endophallic structures, we erected the monotypic subgenus Eodontium subgen. n. for B. bukejsi sp. n., which is probably related to the subgenera Andrewesa Netolitzky, 1931, the Hydrium complex, or the Odontium series sensu Maddison (2012). On the other hand, B. alekseevi sp. n. can be assigned to the subgenus Eupetedromus Netolitzky, 1911. The occurrence of representatives of at least two species groups adapted to a temperate climate suggests the presence of at least locally temperate climates in Baltic amber forests.

      Related collections

      Most cited references 26

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Catalogue of Geadephaga (Coleoptera, Adephaga) of America, north of Mexico

       Yves Bousquet (2012)
      Abstract All scientific names of Trachypachidae, Rhysodidae, and Carabidae (including cicindelines) recorded from America north of Mexico are catalogued. Available species-group names are listed in their original combinations with the author(s), year of publication, page citation, type locality, location of the name-bearing type, and etymology for many patronymic names. In addition, the reference in which a given species-group name is first synonymized is recorded for invalid taxa. Genus-group names are listed with the author(s), year of publication, page citation, type species with way of fixation, and etymology for most. The reference in which a given genus-group name is first synonymized is recorded for many invalid taxa. Family-group names are listed with the author(s), year of publication, page citation, and type genus. The geographical distribution of all species-group taxa is briefly summarized and their state and province records are indicated. One new genus-group taxon, Randallius new subgenus (type species: Chlaenius purpuricollis Randall, 1838), one new replacement name, Pterostichus amadeus new name for Pterostichus vexatus Bousquet, 1985, and three changes in precedence, Ellipsoptera rubicunda (Harris, 1911) for Ellipsoptera marutha (Dow, 1911), Badister micans LeConte, 1844 for Badister ocularis Casey, 1920, and Agonum deplanatum Ménétriés, 1843 for Agonum fallianum (Leng, 1919), are proposed. Five new genus-group synonymies and 65 new species-group synonymies, one new species-group status, and 12 new combinations (see Appendix 5) are established. The work also includes a discussion of the notable private North American carabid collections, a synopsis of all extant world geadephagan tribes and subfamilies, a brief faunistic assessment of the fauna, a list of valid species-group taxa, a list of North American fossil Geadephaga (Appendix 1), a list of North American Geadephaga larvae described or illustrated (Appendix 2), a list of Geadephaga species described from specimens mislabeled as from North America (Appendix 3), a list of unavailable Geadephaga names listed from North America (Appendix 4), a list of nomenclatural acts included in this catalogue (Appendix 5), a complete bibliography with indication of the dates of publication in addition to the year, and indices of personal names, supraspecific names, and species-group names.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Phylogeny of Bembidion and related ground beetles (Coleoptera: Carabidae: Trechinae: Bembidiini: Bembidiina).

        The phylogeny of the large genus Bembidion and related genera is inferred from four nuclear protein-coding genes (CAD, wingless, arginine kinase, and topoisomerase I), ribosomal DNA (28S and 18S), and the mitochondrial gene cytochrome oxidase I (COI). 230 of the more than 1200 species of Bembidion are sampled, as well as 26 species of five related genera, and 14 outgroups. Nuclear copies (numts) of COI were found sparsely scattered through sampled species. The resulting phylogeny, based upon individual gene analyses and combined analyses using maximum likelihood and parsimony, is very well supported at most nodes. Additional analyses explored the evidence, and corroborate the phylogeny. Seven analyses, each with one of the seven genes removed from the combined matrix, were also conducted, and yielded maximum likelihood bootstrap trees sharing over 92% of their nodes with the original, well-resolved bootstrap trees based on the complete set of seven genes. All key nodes were present in all seven analyses missing a single gene, indicating that support for these nodes comes from at least two genes. In addition, the inferred maximum likelihood tree based on the combined matrix is well-behaved and self-predicting, in that simulated evolution of sequences on the inferred tree under the inferred model of evolution yields a matrix from which all but one of the model tree's clades are recovered with bootstrap value >50, suggesting that internal branches in the tree may be of a length to yield sequences sufficient to allow their inference. All likelihood analyses were conducted under both a proportion-invariable plus gamma site-to-site rate variation model, as well as a simpler gamma model. The choice of model did not have a major effect on inferred phylogenies or their bootstrap values. The inferred phylogeny shows that Bembidarenas is not closely related to Bembidiina, and Phrypeus is likely distant as well; the remaining genera of Bembidiina form a monophyletic group. Lionepha, formerly considered a subgenus of Bembidion, is shown to be outside of the clade of Asaphidion+Bembidion, and is separated as its own genus. B. (Phyla) obtusum is quite isolated within Bembidion, and there is some evidence that the remaining Bembidion form a clade. Within Bembidion, there are three large clades that are well-supported, the Bembidion, Odontium, and Ocydromus Series. The Bembidion Series contains Bembidion (s. str.), Notaphus, Furcacampa, Emphanes, Trepanedoris, Diplocampa, and related Holarctic species; all species from South America, Australia, New Zealand; and most species from southern Africa and Madagascar. All species in South America, except for members of Notaphus and Nothocys, form a clade, the Antiperyphanes Complex, which has independently radiated into body forms and niches occupied by multiple, independent Northern-Hemisphere forms. All species from New Zealand, including Zecillenus, and Australian species formerly placed in Ananotaphus together form a clade. Bembidion (s. str.) and Cyclolopha are in a clade with the Old World, Southern Hemisphere lineages Notaphocampa, Sloanephila, and Omotaphus. The large subgenus Notaphus appears to have originated in South America, with all Northern Hemisphere Notaphus arising from within a south-temperate grade. All major variation in frontal furrows on the head is contained within the Bembidion Series. The Odontium Series contains subgenera Hirmoplataphus and Hydriomicrus, which together are the sister clade of Odontium, Bracteon, Ochthedromus, Pseudoperyphus, and Microserrullula. The very large Ocydromus Series, dominant in the Holarctic region, includes the Ocydromus Complex, with many subgenera, including Hypsipezum and Leuchydrium; the phylogeny within this group is notably at odds with the current classification. Also included in the Ocydromus Series are Nepha and Bembidionetolitzkya, as well as the Princidium Complex, in which the intertidal B. (Cillenus) laterale falls. Outside these three series are a number of smaller groups, including the Plataphus Complex (containing Blepharoplataphus, Plataphus, the latter including Plataphodes); the Hydrium Complex (Metallina, Chlorodium, and Hydrium, which contains Eurytrachelus), whose sister group might be subgenus Andrewesa; Trechonepha and Liocosmius, which might be sisters; and B. (Melomalus) planatum, which is not close to Plataphus. There is some evidence that these groups plus the Ocydromus and Odontium Series form a clade. A few enigmatic groups were harder to place. The sister group of the pair Philochthus plus Philochthemphanes might be B. wickhami; Eupetedromus is well outside the three major series and not related to Notaphus; the high-elevation Asian group Hoquedela is a very isolated lineage. Notaphiellus is removed from synonymy with Nothocys, and placed in synonymy with Notaphus; Plataphodes is synonymized with Plataphus, as Plataphus is paraphyletic otherwise; Eurytrachelus is synonymized with Hydrium. A new subgenus, Lindrochthus, is described to house the distinctive B. wickhami. The implications of the inferred phylogeny for some morphological characters used in Bembidiina systematics are explored, and some of the most widely used (e.g., location of discal seta ed3 on the elytron, and shape of the shoulder) are shown to be notably homoplastic. For example, the location of elytral seta ed3 has undergone at least nine transitions between two states. Copyright © 2012 Elsevier Inc. All rights reserved.
          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          The beetles (Insecta: Coleoptera) of Baltic amber: the checklist of described species and preliminary analysis of biodiversity

            Bookmark

            Author and article information

            Affiliations
            [1 ] University of Rostock, Institute of Biosciences, General and Systematic Zoology, Universitätsplatz 2, 18055 Rostock, Germany
            [2 ] University of Marburg, Fb. 17 - Biologie, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
            [3 ] Zoological Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
            Author notes
            Corresponding author: Peter Michalik ( michalik@ 123456uni-greifswald.de )

            Academic editor: B. Guéorguiev

            Journal
            Zookeys
            Zookeys
            ZooKeys
            ZooKeys
            Pensoft Publishers
            1313-2989
            1313-2970
            2017
            21 March 2017
            : 662
            : 101-126
            5539362
            10.3897/zookeys.662.12124
            Joachim Schmidt, Peter Michalik

            This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

            Funding
            Funded by: Deutsche Forschungsgemeinschaft 501100001659 http://doi.org/10.13039/501100001659
            Categories
            Research Article

            Comments

            Comment on this article