46
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Global Molecular Epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An Atlas of the Molecular Types

      Scientifica
      Hindawi Publishing Corporation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge.

          Related collections

          Most cited references822

          • Record: found
          • Abstract: found
          • Article: not found

          AFLP: a new technique for DNA fingerprinting.

          A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sexual reproduction between partners of the same mating type in Cryptococcus neoformans.

            Cryptococcus neoformans is a globally distributed human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised patients. It has a defined sexual cycle involving haploid cells of alpha and a mating types, yet the vast majority of environmental and clinical isolates are alpha (ref. 3). Sexual recombination is normally expected to occur between isolates of opposite mating type in organisms with two mating types (or sexes). How sexual reproductive potential can be maintained in an organism with a largely unisexual, nearly clonal population genetic structure is unknown. One clue, however, is that alpha strains undergo fruiting, a process that resembles sexual mating but is thought to be strictly mitotic and asexual. We report here that hallmarks of mating occur during fruiting, including diploidization and meiosis. Pheromone response pathway elements and the key meiotic regulator Dmc1 are required for efficient fruiting. Furthermore, fusion and meiosis can occur between non-isogenic alpha strains, enabling genetic exchange. These studies reveal how sexual reproduction can occur between partners of the same mating type. These findings have implications for the evolution of microbial pathogens, as well as for parthenogenesis, cell fusion events and transitions between self-fertilizing and outcrossing modes of reproduction observed in both fungi and other kingdoms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The biology of the Cryptococcus neoformans species complex.

              Cryptococcus neoformans is a major cause of fungal meningoencephalitis in immunocompromised patients. Despite recent advances in the genetics and molecular biology of C. neoformans, and improved techniques for molecular epidemiology, aspects of the ecology, population structure, and mode of reproduction of this environmental pathogen remain to be established. Application of recent insights into the life cycle of C. neoformans and its different ways of engaging in sexual reproduction under laboratory conditions has just begun to affect research on the ecology and epidemiology of this human pathogenic fungus. The melding of these disparate disciplines should yield rich dividends in our understanding of the evolution of microbial pathogens, providing insights relevant to diagnosis, treatment, and prevention.
                Bookmark

                Author and article information

                Journal
                3820360
                10.1155/2013/675213
                24278784
                Unknown

                Comments

                Comment on this article