17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Host site selection for concerted integration by human immunodeficiency virus type-1 virions in vitro.

      Biology
      Cells, Cultured, DNA, Superhelical, Detergents, HIV-1, chemistry, genetics, Humans, Plasmids, Recombination, Genetic, Repetitive Sequences, Nucleic Acid, Sequence Deletion, Virion, Virus Integration

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Host site selection for full-site integration by human immunodeficiency virus type-1 (HIV-1) intergrase (IN) from nonionic detergent-lysed virions was investigated. Linear retrovirus-like DNA (469 bp) possessing 3' OH recessed long terminal repeat termini was efficiently inserted by a bimolecular donor reaction into a supercoiled DNA target (2867 bp), producing the HIV-1 5-bp host site duplication. Sequence data were analyzed from 193 donor-target recombinants obtained from the linear 3.8-kb DNA product. The selection of host target sites appeared randomly distributed and was independent of lysis and assay conditions. The fidelity of the 5-bp duplications in comparison to other size duplications was highest (94%) with high-salt (300 mM NaCl) lysis of the virions and 60 mM NaCl for strand transfer using Mg2+ as the divalent cation. Base sequence analysis demonstrated some biases in the 5-bp duplications at the sites of strand transfer and at the immediate host sequences surrounding the duplications. In addition to the observed duplications, approximately 30% of the recombinants isolated from the linear 3.8-kb DNA product contained specific and repetitive small-size deletions. No deletions smaller that 17 bp were observed and the distance between the deletion sets had a periodicity of approximately 10 bp. The mechanisms involved in how HIV-1 IN produces the 5-bp duplications and the repetitive host site deletions are discussed.

          Related collections

          Author and article information

          Comments

          Comment on this article