51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative stress has been postulated to play an important role in the pathogenesis of asthma; although a defect in antioxidant responses has been speculated to exacerbate asthma severity, this has been difficult to demonstrate with certainty. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive basic leucine zipper transcription factor that is involved in the transcriptional regulation of many antioxidant genes. We show that disruption of the Nrf2 gene leads to severe allergen-driven airway inflammation and hyperresponsiveness in mice. Enhanced asthmatic response as a result of ovalbumin sensitization and challenge in Nrf2-disrupted mice was associated with more pronounced mucus cell hyperplasia and infiltration of eosinophils into the lungs than seen in wild-type littermates. Nrf2 disruption resulted in an increased expression of the T helper type 2 cytokines interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and in splenocytes after allergen challenge. The enhanced severity of the asthmatic response from disruption of the Nrf2 pathway was a result of a lowered antioxidant status of the lungs caused by lower basal expression, as well as marked attenuation, of the transcriptional induction of multiple antioxidant genes. Our studies suggest that the responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to allergen-mediated asthma.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway.

          The stress-inducible protein heme oxygenase-1 provides protection against oxidative stress. The anti-inflammatory properties of heme oxygenase-1 may serve as a basis for this cytoprotection. We demonstrate here that carbon monoxide, a by-product of heme catabolism by heme oxygenase, mediates potent anti-inflammatory effects. Both in vivo and in vitro, carbon monoxide at low concentrations differentially and selectively inhibited the expression of lipopolysaccharide-induced pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, and macrophage inflammatory protein-1beta and increased the lipopolysaccharide-induced expression of the anti-inflammatory cytokine interleukin-10. Carbon monoxide mediated these anti-inflammatory effects not through a guanylyl cyclase-cGMP or nitric oxide pathway, but instead through a pathway involving the mitogen-activated protein kinases. These data indicate the possibility that carbon monoxide may have an important protective function in inflammatory disease states and thus has potential therapeutic uses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice.

            Induction of phase 2 enzymes, which neutralize reactive electrophiles and act as indirect antioxidants, appears to be an effective means for achieving protection against a variety of carcinogens in animals and humans. Transcriptional control of the expression of these enzymes is mediated, at least in part, through the antioxidant response element (ARE) found in the regulatory regions of their genes. The transcription factor Nrf2, which binds to the ARE, appears to be essential for the induction of prototypical phase 2 enzymes such as glutathione S-transferases (GSTs) and NAD(P)H:quinone oxidoreductase (NQO1). Constitutive hepatic and gastric activities of GST and NQO1 were reduced by 50-80% in nrf2-deficient mice compared with wild-type mice. Moreover, the 2- to 5-fold induction of these enzymes in wild-type mice by the chemoprotective agent oltipraz, which is currently in clinical trials, was almost completely abrogated in the nrf2-deficient mice. In parallel with the enzymatic changes, nrf2-deficient mice had a significantly higher burden of gastric neoplasia after treatment with benzo[a]pyrene than did wild-type mice. Oltipraz significantly reduced multiplicity of gastric neoplasia in wild-type mice by 55%, but had no effect on tumor burden in nrf2-deficient mice. Thus, Nrf2 plays a central role in the regulation of constitutive and inducible expression of phase 2 enzymes in vivo and dramatically influences susceptibility to carcinogenesis. Moreover, the total loss of anticarcinogenic efficacy of oltipraz in the nrf2-disrupted mice highlights the prime importance of elevated phase 2 gene expression in chemoprotection by this and similar enzyme inducers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunologic basis of antigen-induced airway hyperresponsiveness.

              The incidence, morbidity, and mortality of asthma has increased worldwide over the last two decades. Asthma is a complex inflammatory disease of the lung characterized by variable airflow obstruction, airway hyperresponsiveness (AHR), and airway inflammation. The inflammatory response in the asthmatic lung is characterized by infiltration of the airway wall with mast cells, lymphocytes, and eosinophils. Although asthma is multifactorial in origin, the inflammatory process in the most common form of the disease (extrinsic asthma) is believed to be a result of inappropriate immune responses to common aero-allergens in genetically susceptible individuals. As such, it has been hypothesized that CD4+ T cells that produce a Th2 pattern of cytokines play a pivotal role in the pathogenesis of this disease. Through the release of cytokines such as IL-4, IL-13, and IL-5, these cells orchestrate the recruitment and activation of the primary effector cells of the allergic response, the mast cell and the eosinophil. Activation of these cells results in the release of a plethora of inflammatory mediators that individually or in concert induce changes in airway wall geometry and produce the symptoms of the disease. The aim of this review is to discuss our current understanding of the pathophysiologic mechanisms by which Th2 cytokines induce airway disease, and the factors that predispose to the generation of these pathogenic cells in response to inhalation of ubiquitous aero-allergens. Elucidation of the exact immunological basis for allergic asthma may yield immunotherapeutic strategies to reverse the development of pathogenic Th2-mediated immune responses and reduce the morbidity and mortality associated with this disease.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                4 July 2005
                : 202
                : 1
                : 47-59
                Affiliations
                [1 ]Department of Environmental Health Sciences, Bloomberg School of Public Health
                [2 ]Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
                [3 ]Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
                [4 ]Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
                [5 ]Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, 305-8577, Japan
                [6 ]Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
                Author notes

                CORRESPONDENCE Shyam Biswal: sbiswal@ 123456jhsph.edu

                Article
                20050538
                10.1084/jem.20050538
                2212893
                15998787
                2e530e52-ac59-4766-ac33-b3829a6daf2e
                Copyright © 2005, The Rockefeller University Press
                History
                : 11 March 2005
                : 25 April 2005
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article