17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydrogels based on polysaccharide and protein natural polymers are of great interest in biomedical applications and more specifically for tissue regeneration and drug delivery. Cellulose, chitosan (a chitin derivative), and collagen are probably the most important components since they are the most abundant natural polymers on earth (cellulose and chitin) and in the human body (collagen). Peptides also merit attention because their self-assembling properties mimic the proteins that are present in the extracellular matrix. The present review is mainly focused on explaining the recent advances on hydrogels derived from the indicated polymers or their combinations. Attention has also been paid to the development of hydrogels for innovative biomedical uses. Therefore, smart materials displaying stimuli responsiveness and having shape memory properties are considered. The use of micro- and nanogels for drug delivery applications is also discussed, as well as the high potential of protein-based hydrogels in the production of bioactive matrices with recognition ability (molecular imprinting). Finally, mention is also given to the development of 3D bioprinting technologies.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance

          Although measurements of crystallinity index (CI) have a long history, it has been found that CI varies significantly depending on the choice of measurement method. In this study, four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR) were compared using eight different cellulose preparations. We found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X-ray diffractogram, produced significantly higher crystallinity values than did the other methods. Data in the literature for the cellulose preparation used (Avicel PH-101) support this observation. We believe that the alternative X-ray diffraction (XRD) and NMR methods presented here, which consider the contributions from amorphous and crystalline cellulose to the entire XRD and NMR spectra, provide a more accurate measure of the crystallinity of cellulose. Although celluloses having a high amorphous content are usually more easily digested by enzymes, it is unclear, based on studies published in the literature, whether CI actually provides a clear indication of the digestibility of a cellulose sample. Cellulose accessibility should be affected by crystallinity, but is also likely to be affected by several other parameters, such as lignin/hemicellulose contents and distribution, porosity, and particle size. Given the methodological dependency of cellulose CI values and the complex nature of cellulase interactions with amorphous and crystalline celluloses, we caution against trying to correlate relatively small changes in CI with changes in cellulose digestibility. In addition, the prediction of cellulase performance based on low levels of cellulose conversion may not include sufficient digestion of the crystalline component to be meaningful.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Supramolecular gels: functions and uses.

            In recent years there has been immense interest in studying gels derived from low molecular mass gelators (supramolecular, or simply molecular gels). The motivation for this is not only to understand the fundamental aggregate structures in the gels at different length scales, but also to explore their potential for futuristic technological applications. Gels have been made sensitive to external stimuli like light and chemical entities by incorporating a spectroscopically active or a receptor unit as part of the gelator molecule. This makes them suitable for applications such as sensing and actuating. The diversity of gel structural architectures has allowed them to be utilized as templates to prepare novel inorganic superstructures for possible applications in catalysis and separation. Gels derived from liquid crystals (anisotropy gels) that can act as dynamically functional materials have been prepared, for example, for (re-writable) information recording. Supramolecular gels can be important in controlled release applications, in oil recovery, for gelling cryogenic fuels etc. They can also serve as media for a range of applications. This tutorial review highlights some of the instructive work done by various groups to develop smart and functional gels, and covers a wide spectrum of scientific interest ranging from medicine to materials science.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Additive manufacturing of tissues and organs

                Bookmark

                Author and article information

                Journal
                Gels
                Gels
                gels
                Gels
                MDPI
                2310-2861
                17 July 2017
                September 2017
                : 3
                : 3
                : 27
                Affiliations
                Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Barcelona 08019, Spain; luis.javier.del.valle@ 123456upc.edu (L.J.d.V.); angelicadiaz07@ 123456gmail.com (A.D.)
                Author notes
                [* ]Correspondence: Jordi.Puiggali@ 123456upc.edu ; Tel.: +34-93-401-5649
                Article
                gels-03-00027
                10.3390/gels3030027
                6318613
                30920524
                2e5a90f9-b4a9-4565-b6f4-b3e7fae0e7a1
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 June 2017
                : 10 July 2017
                Categories
                Review

                cellulose,chitosan,collagen,gelatin,peptides,self-assembling,nanogels,shape memory,molecularly imprinting,3d printing

                Comments

                Comment on this article