48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fertilization has a large impact on the soil microbial communities, which play pivotal roles in soil biogeochemical cycling and ecological processes. While the effects of changes in nutrient availability due to fertilization on the soil microbial communities have received considerable attention, specific microbial taxa strongly influenced by long-term organic and inorganic fertilization, their potential effects and associations with soil nutrients remain unclear. Here, we use deep 16S amplicon sequencing to investigate bacterial community characteristics in a fluvo-aquic soil treated for 24 years with inorganic fertilizers and organics (manure and straw)-inorganic fertilizers, and uncover potential links between soil nutrient parameters and specific bacterial taxa. Our results showed that combined organic-inorganic fertilization increased soil organic carbon (SOC) and total nitrogen (TN) contents and altered bacterial community composition, while inorganic fertilization had little impact on soil nutrients and bacterial community composition. SOC and TN emerged as the major determinants of community composition. The abundances of specific taxa, especially Arenimonas, Gemmatimonas, and an unclassified member of Xanthomonadaceae, were substantially increased by organic-inorganic amendments rather than inorganic amendments only. A co-occurrence based network analysis demonstrated that SOC and TN had strong positive associations with some taxa ( Gemmatimonas and the members of Acidobacteria subgroup 6, Myxococcales, Betaproteobacteria, and Bacteroidetes), and Gemmatimonas, Flavobacterium, and an unclassified member of Verrucomicrobia were identified as the keystone taxa. These specific taxa identified above are implicated in the decomposition of complex organic matters and soil carbon, nitrogen, and phosphorus transformations. The present work strengthens our current understanding of the soil microbial community structure and functions under long-term fertilization management and provides certain theoretical support for selection of rational fertilization strategies.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

          The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known "mock communities" at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparing the yields of organic and conventional agriculture.

            Numerous reports have emphasized the need for major changes in the global food system: agriculture must meet the twin challenge of feeding a growing population, with rising demand for meat and high-calorie diets, while simultaneously minimizing its global environmental impacts. Organic farming—a system aimed at producing food with minimal harm to ecosystems, animals or humans—is often proposed as a solution. However, critics argue that organic agriculture may have lower yields and would therefore need more land to produce the same amount of food as conventional farms, resulting in more widespread deforestation and biodiversity loss, and thus undermining the environmental benefits of organic practices. Here we use a comprehensive meta-analysis to examine the relative yield performance of organic and conventional farming systems globally. Our analysis of available data shows that, overall, organic yields are typically lower than conventional yields. But these yield differences are highly contextual, depending on system and site characteristics, and range from 5% lower organic yields (rain-fed legumes and perennials on weak-acidic to weak-alkaline soils), 13% lower yields (when best organic practices are used), to 34% lower yields (when the conventional and organic systems are most comparable). Under certain conditions—that is, with good management practices, particular crop types and growing conditions—organic systems can thus nearly match conventional yields, whereas under others it at present cannot. To establish organic agriculture as an important tool in sustainable food production, the factors limiting organic yields need to be more fully understood, alongside assessments of the many social, environmental and economic benefits of organic farming systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward an ecological classification of soil bacteria.

              Although researchers have begun cataloging the incredible diversity of bacteria found in soil, we are largely unable to interpret this information in an ecological context, including which groups of bacteria are most abundant in different soils and why. With this study, we examined how the abundances of major soil bacterial phyla correspond to the biotic and abiotic characteristics of the soil environment to determine if they can be divided into ecologically meaningful categories. To do this, we collected 71 unique soil samples from a wide range of ecosystems across North America and looked for relationships between soil properties and the relative abundances of six dominant bacterial phyla (Acidobacteria, Bacteroidetes, Firmicutes, Actinobacteria, alpha-Proteobacteria, and the beta-Proteobacteria). Of the soil properties measured, net carbon (C) mineralization rate (an index of C availability) was the best predictor of phylum-level abundances. There was a negative correlation between Acidobacteria abundance and C mineralization rates (r2 = 0.26, P < 0.001), while the abundances of beta-Proteobacteria and Bacteroidetes were positively correlated with C mineralization rates (r2 = 0.35, P < 0.001 and r2 = 0.34, P < 0.001, respectively). These patterns were explored further using both experimental and meta-analytical approaches. We amended soil cores from a specific site with varying levels of sucrose over a 12-month period to maintain a gradient of elevated C availabilities. This experiment confirmed our survey results: there was a negative relationship between C amendment level and the abundance of Acidobacteria (r2 = 0.42, P < 0.01) and a positive relationship for both Bacteroidetes and beta-Proteobacteria (r2 = 0.38 and 0.70, respectively; P < 0.01 for each). Further support for a relationship between the relative abundances of these bacterial phyla and C availability was garnered from an analysis of published bacterial clone libraries from bulk and rhizosphere soils. Together our survey, experimental, and meta-analytical results suggest that certain bacterial phyla can be differentiated into copiotrophic and oligotrophic categories that correspond to the r- and K-selected categories used to describe the ecological attributes of plants and animals. By applying the copiotroph-oligotroph concept to soil microorganisms we can make specific predictions about the ecological attributes of various bacterial taxa and better understand the structure and function of soil bacterial communities.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                09 February 2017
                2017
                : 8
                : 187
                Affiliations
                [1] 1Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University Zhengzhou, China
                [2] 2State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
                [3] 3Institute of Plant Nutrition and Environmental Resources Science, Henan Academy of Agricultural Sciences Zhengzhou, China
                Author notes

                Edited by: Alexandre Jousset, Utrecht University, Netherlands

                Reviewed by: Mark Radosevich, University of Tennessee, USA; Thomas Pommier, Institut National de la Recherche Agronomique (INRA), France

                *Correspondence: Jiabao Zhang jbzhang@ 123456issas.ac.cn

                This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology

                †These authors have contributed equally to this work.

                Article
                10.3389/fmicb.2017.00187
                5298992
                28232824
                2e5c0c12-8a36-49d7-a5c4-8d15a4aa42b8
                Copyright © 2017 Li, Chen, Zhang, Yin and Huang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 October 2016
                : 25 January 2017
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 70, Pages: 12, Words: 8272
                Funding
                Funded by: Chinese Academy of Sciences 10.13039/501100002367
                Award ID: XDB15030302
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 41471182
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                long-term fertilization,soil bacteria,specific taxa,co-occurrence,nutrient transformations

                Comments

                Comment on this article