18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-insecticide susceptibility evaluation of dengue vectors Stegomyia albopicta and St. aegypti in Assam, India

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dengue is rapidly expanding mosquito-borne viral infection globally facing operational challenges due to insecticide resistance in dengue vectors. We have studied the susceptibility status of potential dengue vectors St. albopicta and St. aegypti to the commonly used insecticides.

          Methods

          Stegomyia larval bioassays were carried out to determine LC 10, LC 50 and LC 99 values and resistance ratios (RR 50 and RR 99) for temephos. Adult susceptibility bioassay to 4% DDT, 0.05% deltamethrin, 5% malathion was assessed following standard procedure to determine the corrected mortality. Knock-down times (KDT 50 and KDT 99) were estimated and the knock-down resistance ratios (KRR 50 and KRR 99) were calculated.

          Results

          St. albopicta wild population (WP) of Sotia was resistant to temephos as the LC 99 value was 0.12 mg/l and found to be 2.3 fold high than the reference population (RP). St. aegypti WP of Borgong, Kusumtola and Serajuli displayed a RR 99 of 2.5, 5.4 and 4.5 respectively suggesting high level of resistance to temephos. Results suggested that both St. albopicta and St. aegypti WP were fully resistant to DDT (mortality < 90%) in all the study locations. Both the species were completely susceptible to deltamethrin and malathion (corrected mortality > 98%), except for St. albopicta at Sotia which displayed low level of resistance to malathion (corrected mortality =95.4%). The estimated KDT values for both the species indicated high level of knock-down resistance to DDT and susceptibility to deltamethrin.

          Conclusion

          WP of both the dengue vectors showed varied response to temephos, while resistant to DDT and completely susceptible to deltamethrin. Both the species were susceptible to malathion at majority of the testing sites. Current results strongly advocate that DDT is no longer effective against dengue vectors, while thorough monitoring of malathion susceptibility in geographical area at dengue risk is inexorable to ascertain whether or not the resistance to malathion is focal. Information generated herein may be useful in better planning and implementing in dengue control strategy using insecticides.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene.

          Samples of the dengue vector mosquito Aedes aegypti (L.) (Diptera: Culicidae) were collected from 13 localities between 1995 and 1998. Two laboratory strains, Bora (French Polynesia) and AEAE, were both susceptible to DDT and permethrin; all other strains, except Larentuka (Indonesia) and Bouaké (Ivory Coast), contained individual fourth-instar larvae resistant to permethrin. Ten strains were subjected to a range of biochemical assays. Many strains had elevated carboxylesterase activity compared to the Bora strain; this was particularly high in the Indonesian strains Salatiga and Semarang, and in the Guyane strain (Cayenne). Monooxygenase levels were increased in the Salatiga and Paea (Polynesia) strains, and reduced in the two Thai strains (Mae Kaza, Mae Kud) and the Larentuka strain. Glutathione S-transferase activity was elevated in the Guyane strain. All other enzyme profiles were similar to the susceptible strain. The presence of both DDT and pyrethroid resistance in the Semarang, Belem (Brazil) and Long Hoa (Vietnam) strains suggested the presence of a knock-down resistant (kdr)-type resistance mechanism. Part of the S6 hydrophobic segment of domain II of the voltage-gated sodium channel gene was obtained by RT-PCR and sequenced from several insects from all 13 field strains. Four novel mutations were identified. Three strains contained identical amino acid substitutions at two positions, two strains shared a different substitution, and one strain was homozygous for a fourth alteration. The leucine to phenylalanine substitution that confers nerve insensitivity to pyrethroids in a range of other resistant insects was absent. Direct neurophysiological assays on individual larvae from three strains with these mutations demonstrated reduced nerve sensitivity to permethrin or lambda cyhalothrin inhibition compared to the susceptible strains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand

            Physiological resistance and behavioral responses of mosquito vectors to insecticides are critical aspects of the chemical-based disease control equation. The complex interaction between lethal, sub-lethal and excitation/repellent ('excito-repellent’) properties of chemicals is typically overlooked in vector management and control programs. The development of “physiological” resistance, metabolic and/or target site modifications, to insecticides has been well documented in many insect groups and disease vectors around the world. In Thailand, resistance in many mosquito populations has developed to all three classes of insecticidal active ingredients currently used for vector control with a majority being synthetic-derived pyrethroids. Evidence of low-grade insecticide resistance requires immediate countermeasures to mitigate further intensification and spread of the genetic mechanisms responsible for resistance. This can take the form of rotation of a different class of chemical, addition of a synergist, mixtures of chemicals or concurrent mosaic application of different classes of chemicals. From the gathered evidence, the distribution and degree of physiological resistance has been restricted in specific areas of Thailand in spite of long-term use of chemicals to control insect pests and disease vectors throughout the country. Most surprisingly, there have been no reported cases of pyrethroid resistance in anopheline populations in the country from 2000 to 2011. The precise reasons for this are unclear but we assume that behavioral avoidance to insecticides may play a significant role in reducing the selection pressure and thus occurrence and spread of insecticide resistance. The review herein provides information regarding the status of physiological resistance and behavioral avoidance of the primary mosquito vectors of human diseases to insecticides in Thailand from 2000 to 2011.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Insecticide Resistance Status of United States Populations of Aedes albopictus and Mechanisms Involved

              Aedes albopictus (Skuse) is an invasive mosquito that has become an important vector of chikungunya and dengue viruses. Immature Ae. albopictus thrive in backyard household containers that require treatment with larvicides and when adult populations reach pest levels or disease transmission is ongoing, adulticiding is often required. To assess the feasibility of control of USA populations, we tested the susceptibility of Ae. albopictus to chemicals representing the main insecticide classes with different modes of action: organochlorines, organophosphates, carbamates, pyrethroids, insect growth regulators (IGR), naturalytes, and biolarvicides. We characterized a susceptible reference strain of Ae. albopictus, ATM95, and tested the susceptibility of eight USA populations to five adulticides and six larvicides. We found that USA populations are broadly susceptible to currently available larvicides and adulticides. Unexpectedly, however, we found significant resistance to dichlorodiphenyltrichloroethane (DDT) in two Florida populations and in a New Jersey population. We also found resistance to malathion, an organophosphate, in Florida and New Jersey and reduced susceptibility to the IGRs pyriproxyfen and methoprene. All populations tested were fully susceptible to pyrethroids. Biochemical assays revealed a significant up-regulation of GSTs in DDT-resistant populations in both larval and adult stages. Also, β-esterases were up-regulated in the populations with suspected resistance to malathion. Of note, we identified a previously unknown amino acid polymorphism (Phe → Leu) in domain III of the VGSC, in a location known to be associated with pyrethroid resistance in another container-inhabiting mosquito, Aedes aegypti L. The observed DDT resistance in populations from Florida may indicate multiple introductions of this species into the USA, possibly from tropical populations. In addition, the mechanisms underlying DDT resistance often result in pyrethroid resistance, which would undermine a remaining tool for the control of Ae. albopictus. Continued monitoring of the insecticide resistance status of this species is imperative.
                Bookmark

                Author and article information

                Contributors
                kavitanami@gmail.com
                rabha_bipul05@rediffmail.com
                sunildhiman81@gmail.com
                vijayveer50@yahoo.com
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                3 March 2015
                3 March 2015
                2015
                : 8
                : 143
                Affiliations
                Defence Research Laboratory, Tezpur, Assam 784 001 India
                Article
                754
                10.1186/s13071-015-0754-0
                4359396
                25886449
                2e697858-c1fb-40bb-91c1-b552b9668c03
                © Yadav et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 November 2014
                : 18 February 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Parasitology
                st. albopicta,st. aegypti,dengue vector,northeast india,insecticide resistance
                Parasitology
                st. albopicta, st. aegypti, dengue vector, northeast india, insecticide resistance

                Comments

                Comment on this article