+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intravenous Administration of Triptonide Attenuates CFA-Induced Pain Hypersensitivity by Inhibiting DRG AKT Signaling Pathway in Mice

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Currently, medical treatment of inflammatory pain is limited by a lack of safe and effective therapies. Triptonide (TPN), a major component of Tripterygium wilfordii Hook.f. with low toxicity, has been shown to have good anti-inflammatory and neuroprotective effects. The present study aims to investigate the effects of TPN on chronic inflammatory pain.

          Materials and Methods

          Inflammatory pain was induced by intraplantar injection of complete Freund’s adjuvant (CFA). TPN’s three different doses were intravenously administered to compare the analgesic efficacy: 0.1 mg/kg, 0.5 mg/kg, and 2.0 mg/kg. The foot swelling was quantitated by measuring paw volume. Mechanical allodynia and thermal hyperalgesia were assessed with von Frey filament testing and Hargreaves’ test, respectively. Western blots, qRT–PCR and immunofluorescence tests were used to analyze the expression of pAKT, tumor necrosis factor-α ( TNF-α), interleukin 1 beta ( IL-1β), and interleukin 6 ( IL-6). Two AKT inhibitors, AKT inhibitor Ⅳ and MK-2206, were used to examine AKT’s effects on pain behavior and cytokines expression.


          Intravenous treatment with TPN attenuated CFA-induced paw edema, mechanical allodynia, and thermal hyperalgesia. Western blotting and immunofluorescence results showed that CFA induced AKT activation in the dorsal root ganglion (DRG) neurons. However, these effects were suppressed by treatment with TPN. Furthermore, TPN treatment inhibited CFA-induced increase of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6. Consistent with the in vivo data, TPN inhibited LPS-induced Akt phosphorylation and inflammatory mediator production in ND7/23 cells. Finally, intrathecal treatment with AKT inhibitor Ⅳ or MK-2206, attenuated CFA-induced mechanical allodynia and thermal hyperalgesia, and simultaneously decreased the mRNA expression of TNF-α, IL-1β, and IL-6 in DRG.


          These data indicate that TPN attenuates CFA-induced pain potentially via inhibiting AKT-mediated pro-inflammatory cytokines production in DRG. TPN may be used for the treatment of chronic inflammatory pain.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          Pain regulation by non-neuronal cells and inflammation

          Acute pain is protective and a cardinal feature of inflammation. Chronic pain after arthritis, nerve injury, cancer, and chemotherapy is associated with chronic neuroinflammation, a local inflammation in the peripheral or central nervous system. Accumulating evidence suggests that non-neuronal cells such as immune cells, glial cells, keratinocytes, cancer cells, and stem cells play active roles in the pathogenesis and resolution of pain. We review how non-neuronal cells interact with nociceptive neurons by secreting neuroactive signaling molecules that modulate pain. Recent studies also suggest that bacterial infections regulate pain through direct actions on sensory neurons, and specific receptors are present in nociceptors to detect danger signals from infections. We also discuss new therapeutic strategies to control neuroinflammation for the prevention and treatment of chronic pain.
            • Record: found
            • Abstract: found
            • Article: not found

            IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-κB- and PI3-kinase/Akt-dependent pathways

            Recent studies of the pathogenesis of rheumatoid arthritis (RA) have revealed that both synovial fibroblasts and T cells participate in the perpetuation of joint inflammation as dynamic partners in a mutual activation feedback, via secretion of cytokines and chemokines that stimulate each other. In this study, we investigated the role of IL-17, a major Th1 cytokine produced by activated T cells, in the activation of RA synovial fibroblasts. Transcripts of IL-17R (IL-17 receptor) and IL-17RB (IL-17 receptor B) were present in fibroblast-like synoviocytes (FLS) of RA patients. IL-17R responded with increased expression upon in vitro stimulation with IL-17, while the level of IL-17RB did not change. IL-17 enhanced the production of IL-6 and IL-8 in FLS, as previously shown, but did not affect the synthesis of IL-15. IL-17 appears to be a stronger inducer of IL-6 and IL-8 than IL-15, and even exerted activation comparable to that of IL-1β in RA FLS. IL-17-mediated induction of IL-6 and IL-8 was transduced via activation of phosphatidylinositol 3-kinase/Akt and NF-κB, while CD40 ligation and p38 MAPK (mitogen-activated protein kinase) are not likely to partake in the process. Together these results suggest that IL-17 is capable of more than accessory roles in the activation of RA FLS and provide grounds for targeting IL-17-associated pathways in therapeutic modulation of arthritis inflammation.
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization.

              Although the PI3K (phosphatidylinositol 3-kinase) pathway typically regulates cell growth and survival, increasing evidence indicates the involvement of this pathway in neural plasticity. It is unknown whether the PI3K pathway can mediate pain hypersensitivity. Intradermal injection of capsaicin and NGF produce heat hyperalgesia by activating their respective TRPV1 (transient receptor potential vanilloid receptor-1) and TrkA receptors on nociceptor sensory nerve terminals. We examined the activation of PI3K in primary sensory DRG neurons by these inflammatory agents and the contribution of PI3K activation to inflammatory pain. We further investigated the correlation between the PI3K and the ERK (extracellular signal-regulated protein kinase) pathway. Capsaicin and NGF induce phosphorylation of the PI3K downstream target AKT (protein kinase B), which is blocked by the PI3K inhibitors LY294002 and wortmannin, indicative of the activation of PI3K by both agents. ERK activation by capsaicin and NGF was also blocked by PI3K inhibitors. Similarly, intradermal capsaicin in rats activated PI3K and ERK in C-fiber DRG neurons and epidermal nerve fibers. Injection of PI3K or MEK (ERK kinase) inhibitors into the hindpaw attenuated capsaicin- and NGF-evoked heat hyperalgesia but did not change basal heat sensitivity. Furthermore, PI3K, but not ERK, inhibition blocked early induction of hyperalgesia. In acutely dissociated DRG neurons, the capsaicin-induced TRPV1 current was strikingly potentiated by NGF, and this potentiation was completely blocked by PI3K inhibitors and primarily suppressed by MEK inhibitors. Therefore, PI3K induces heat hyperalgesia, possibly by regulating TRPV1 activity, in an ERK-dependent manner. The PI3K pathway also appears to play a role that is distinct from ERK by regulating the early onset of inflammatory pain.

                Author and article information

                J Pain Res
                J Pain Res
                Journal of Pain Research
                01 December 2020
                : 13
                : 3195-3206
                [1 ]Institute of Pain Medicine, Nantong University , Nantong, Jiangsu 226019, People’s Republic of China
                [2 ]Institute of Special Environmental Medicine, Nantong University , Nantong, Jiangsu 226019, People’s Republic of China
                [3 ]School of Medicine, Nantong University , Nantong, Jiangsu, People’s Republic of China
                Author notes
                Correspondence: Bao-Chun Jiang Institute of Pain Medicine, Nantong University , 9 Seyuan Road, Nantong, Jiangsu226019, People’s Republic of ChinaTel +86-513-55003373 Email jiangbaochun@ntu.edu.cn
                © 2020 Ling et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 7, References: 42, Pages: 12
                Funded by: the National Natural Science Foundation of China;
                Funded by: the Natural Science Foundation of Jiangsu Province;
                Funded by: the Jiangsu University Qing Lan Project;
                Funded by: the Six talent peaks project in Jiangsu Province;
                This work was funded by grants from the National Natural Science Foundation of China (NSFC 81771197, 81971054, 81300954 and 81400915), the Natural Science Foundation of Jiangsu Province (BK20171255), the Jiangsu University Qing Lan Project, and the Six talent peaks project in Jiangsu Province (SWYY-070).
                Original Research

                Anesthesiology & Pain management

                inflammatory pain, pro-inflammatory factors, drg, triptonide, akt


                Comment on this article