Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heavy metal pollution is one of the most serious environmental and human health risk problem associated with industrial progress. The present study was conducted with the goal of isolation and characterization of metal-resistant lactic acid bacteria (LAB) from the Alexandrian Mediterranean Seacoast, Egypt, with their possible exploitation in metal remediation. Lactobacillus plantarum MF042018 exhibited high degree of resistance, up to 500 and 100 ppm, to both nickel and chromium, respectively, with multiple antibiotic resistance (MAR) index above 0.5. In an attempt to improve chromium removal by L. plantarum MF042018, Plackett-Burman followed by Box-Behnken statistical designs were applied. An initial Cr 2+ concentration of 100 ppm and inoculum size of 3% presented the best conditions for the accumulation of chromium by L. plantarum MF042018. The study was also navigated to assess the biosorption capacity of L. plantarum MF042018, the maximum uptake capacity ( q) of both Cd 2+ and Pb 2+ was recorded at pH 2.0 and a temperature of 22 °C after 1 hr. The biosorption process of Cd 2+ and Pb 2+ was well explained by the Langmuir isotherm model better than the Freundlich isotherm. Furthermore, the results revealed that the use of L. plantarum MF042018 is an effective tool for the treatment of hazardous metal-polluted battery-manufacturing effluent. Therefore, the present study implies that L. plantarum MF042018 can be applied as a promising biosorbent for the removal of heavy metals from industrial wasterwaters.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: not found
          • Article: not found

          THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Some New Three Level Designs for the Study of Quantitative Variables

             G. BOX,  D. Behnken (1960)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water

              Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nanosystems and nanomaterials for the fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer, and removal of a heavy metal (i.e., lead) and its subsequent recovery for recycling purposes. Microbots’ structure consists of nanosized multilayers of graphene oxide, nickel, and platinum, providing different functionalities. The outer layer of graphene oxide captures lead on the surface, and the inner layer of platinum functions as the engine decomposing hydrogen peroxide fuel for self-propulsion, while the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead 10 times more efficiently than nonmotile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals.
                Bookmark

                Author and article information

                Contributors
                amira_hamdan1978@yahoo.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                15 January 2020
                15 January 2020
                2020
                : 10
                Affiliations
                [1 ]ISNI 0000 0001 2260 6941, GRID grid.7155.6, Botany and Microbiology Department, Faculty of Science, , Alexandria University, ; Alexandria, Egypt
                [2 ]ISNI 0000 0001 2260 6941, GRID grid.7155.6, Oceanography Department, Faculty of Science, , Alexandria University, ; Alexandria, Egypt
                Article
                57210
                10.1038/s41598-019-57210-3
                6962342
                31941935
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized

                water microbiology, applied microbiology

                Comments

                Comment on this article