14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dogs are not better than humans at detecting coherent motion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability to perceive motion is one of the main properties of the visual system. Sensitivity in detecting coherent motion has been thoroughly investigated in humans, where thresholds for motion detection are well below 10% of coherence, i.e. of the proportion of dots coherently moving in the same direction, among a background of randomly moving dots. Equally low thresholds have been found in other species, including monkeys, cats and seals. Given the lack of data from the domestic dog, we tested 5 adult dogs on a conditioned discrimination task with random dot displays. In addition, five adult humans were tested in the same condition for comparative purposes. The mean threshold for motion detection in our dogs was 42% of coherence, while that of humans was as low as 5%. Therefore, dogs have a much higher threshold of coherent motion detection than humans, and possibly also than phylogenetically closer species that have been tested in similar experimental conditions. Various factors, including the relative role of global and local motion processing and experience with the experimental stimuli may have contributed to this result. Overall, this finding questions the general claim on dogs’ high performance in detecting motion.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          The Psychophysics Toolbox

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The analysis of visual motion: a comparison of neuronal and psychophysical performance.

            We compared the ability of psychophysical observers and single cortical neurons to discriminate weak motion signals in a stochastic visual display. All data were obtained from rhesus monkeys trained to perform a direction discrimination task near psychophysical threshold. The conditions for such a comparison were ideal in that both psychophysical and physiological data were obtained in the same animals, on the same sets of trials, and using the same visual display. In addition, the psychophysical task was tailored in each experiment to the physiological properties of the neuron under study; the visual display was matched to each neuron's preference for size, speed, and direction of motion. Under these conditions, the sensitivity of most MT neurons was very similar to the psychophysical sensitivity of the animal observers. In fact, the responses of single neurons typically provided a satisfactory account of both absolute psychophysical threshold and the shape of the psychometric function relating performance to the strength of the motion signal. Thus, psychophysical decisions in our task are likely to be based upon a relatively small number of neural signals. These signals could be carried by a small number of neurons if the responses of the pooled neurons are statistically independent. Alternatively, the signals may be carried by a much larger pool of neurons if their responses are partially intercorrelated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The VideoToolbox software for visual psychophysics: transforming numbers into movies.

              D. Pelli (1997)
              The VideoToolbox is a free collection of two hundred C subroutines for Macintosh computers that calibrates and controls the computer-display interface to create accurately specified visual stimuli. High-level platform-independent languages like MATLAB are best for creating the numbers that describe the desired images. Low-level, computer-specific VideoToolbox routines control the hardware that transforms those numbers into a movie. Transcending the particular computer and language, we discuss the nature of the computer-display interface, and how to calibrate and control it.
                Bookmark

                Author and article information

                Contributors
                lieta.marinelli@unipd.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 September 2017
                12 September 2017
                2017
                : 7
                : 11259
                Affiliations
                [1 ]ISNI 0000 0004 1757 3470, GRID grid.5608.b, Laboratory of Applied Ethology, Dipartimento di Biomedicina Comparata e Alimentazione, University of Padova, Viale dell’Università 16, ; 35020 Legnaro, (PD) Italy
                [2 ]ISNI 0000 0004 1757 3470, GRID grid.5608.b, Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, ; Padova, (PD) Italy
                Author information
                http://orcid.org/0000-0001-8599-4005
                Article
                11864
                10.1038/s41598-017-11864-z
                5595918
                28900293
                2e8a0219-70c5-4d73-9efc-d45cf8edc93c
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 March 2017
                : 31 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article