36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10–driven MARCH1-mediated ubiquitination and degradation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          By opposing IL-10–driven, MARCH1-mediated ubiquitination and degradation of MHC class II, CD83 may boost the immunogenicity of dendritic cells.

          Abstract

          Effective vaccine adjuvants must induce expression of major histocompatability (MHC) class II proteins and the costimulatory molecule CD86 on dendritic cells (DCs). However, some adjuvants elicit production of cytokines resulting in adverse inflammatory consequences. Development of agents that selectively increase MHC class II and CD86 expression without triggering unwanted cytokine production requires a better understanding of the molecular mechanisms influencing the production and degradation of MHC class II and CD86 in DCs. Here, we investigate how CD83, an immunoglobulin protein expressed on the surface of mature DCs, promotes MHC class II and CD86 expression. Using mice with an N-ethyl- N-nitrosourea–induced mutation eliminating the transmembrane (TM) region of CD83, we found that the TM domain of CD83 enhances MHC class II and CD86 expression by blocking MHC class II association with the ubiquitin ligase MARCH1. The TM region of CD83 blocks interleukin 10–driven, MARCH1-dependent ubiquitination and degradation of MHC class II and CD86 in DCs. Exploiting this posttranslational pathway for boosting MHC class II and CD86 expression on DCs may provide an opportunity to enhance the immunogenicity of vaccines.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Taking dendritic cells into medicine.

          Dendritic cells (DCs) orchestrate a repertoire of immune responses that bring about resistance to infection and silencing or tolerance to self. In the settings of infection and cancer, microbes and tumours can exploit DCs to evade immunity, but DCs also can generate resistance, a capacity that is readily enhanced with DC-targeted vaccines. During allergy, autoimmunity and transplant rejection, DCs instigate unwanted responses that cause disease, but, again, DCs can be harnessed to silence these conditions with novel therapies. Here we present some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4.

            The inflammatory toxicity of lipopolysaccharide (LPS), a component of bacterial cell walls, is driven by the adaptor proteins myeloid differentiation factor 88 (MyD88) and Toll-interleukin 1 receptor domain-containing adapter inducing interferon-beta (TRIF), which together mediate signaling by the endotoxin receptor Toll-like receptor 4 (TLR4). Monophosphoryl lipid A (MPLA) is a low-toxicity derivative of LPS with useful immunostimulatory properties, which is nearing regulatory approval for use as a human vaccine adjuvant. We report here that, in mice, the low toxicity of MPLA's adjuvant function is associated with a bias toward TRIF signaling, which we suggest is likely caused by the active suppression, rather than passive loss, of proinflammatory activity of this LPS derivative. This finding may have important implications for the development of future vaccine adjuvants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression

              Interleukin 10 (IL-10) and viral IL-10 (v-IL-10) strongly reduced antigen-specific proliferation of human T cells and CD4+ T cell clones when monocytes were used as antigen-presenting cells. In contrast, IL- 10 and v-IL-10 did not affect the proliferative responses to antigens presented by autologous Epstein-Barr virus-lymphoblastoid cell line (EBV-LCL). Inhibition of antigen-specific T cell responses was associated with downregulation of constitutive, as well as interferon gamma- or IL-4-induced, class II MHC expression on monocytes by IL-10 and v-IL-10, resulting in the reduction in antigen-presenting capacity of these cells. In contrast, IL-10 and v-IL-10 had no effect on class II major histocompatibility complex (MHC) expression on EBV-LCL. The reduced antigen-presenting capacity of monocytes correlated with a decreased capacity to mobilize intracellular Ca2+ in the responder T cell clones. The diminished antigen-presenting capacities of monocytes were not due to inhibitory effects of IL-10 and v-IL-10 on antigen processing, since the proliferative T cell responses to antigenic peptides, which did not require processing, were equally well inhibited. Furthermore, the inhibitory effects of IL-10 and v-IL-10 on antigen-specific proliferative T cell responses could not be neutralized by exogenous IL-2 or IL-4. Although IL-10 and v-IL-10 suppressed IL-1 alpha, IL-1 beta, tumor necrosis factor alpha (TNF- alpha), and IL-6 production by monocytes, it was excluded that these cytokines played a role in antigen-specific T cell proliferation, since normal antigen-specific responses were observed in the presence of neutralizing anti-IL-1, -IL-6, and -TNF-alpha mAbs. Furthermore, addition of saturating concentrations of IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha to the cultures had no effect on the reduced proliferative T cell responses in the presence of IL-10, or v-IL-10. Collectively, our data indicate that IL-10 and v-IL-10 can completely prevent antigen-specific T cell proliferation by inhibition of the antigen-presenting capacity of monocytes through downregulation of class II MHC antigens on monocytes.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                17 January 2011
                : 208
                : 1
                : 149-165
                Affiliations
                [1 ]Immunology Department, John Curtin School of Medical Research, the Australian National University, Canberra ACT 2601, Australia
                [2 ]Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
                [3 ]Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
                [4 ]Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
                Author notes
                CORRESPONDENCE Christopher C. Goodnow: chris.goodnow@ 123456anu.edu.au

                L.E. Tze and K. Horikawa contributed equally to this paper.

                Article
                20092203
                10.1084/jem.20092203
                3023131
                21220452
                2e9acba7-a98a-48d0-8334-a649e2ee0ce4
                © 2011 Tze et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 13 October 2009
                : 23 November 2010
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article