32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Matrix metalloproteinase-1 up-regulation by hepatocyte growth factor in human dermal fibroblasts via ERK signaling pathway involves Ets1 and Fli1

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we clarified the molecular mechanism(s) underlying the regulation of matrix metalloproteinase (MMP)-1 gene by hepatocyte growth factor (HGF) in cultured human dermal fibroblasts. HGF induced MMP-1 protein as well as mRNA at a transcriptional level via extracellular signal-regulated kinase (ERK) signaling pathway. The region in the MMP-1 promoter mediating the inducible responsiveness to HGF, defined by the transient transfection analysis of the serial 5′ deletion constructs, contained an Ets binding site. Mutation of this Ets binding site abrogated the HGF-inducible promoter activity. Ets1 up-regulated the expression of MMP-1 promoter activity, whereas Fli1 had antagonistic effects on them. After HGF treatment, the protein level and the binding activity of Ets1 was increased and those of Fli1 was decreased, which were canceled by PD98059. These results suggest that HGF up-regulates MMP-1 expression via ERK signaling pathway through the balance of Ets1 and Fli1, which may be a novel mechanism of regulating MMP-1 gene expression.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular cloning and expression of human hepatocyte growth factor.

          Hepatocyte growth factor (HGF) is the most potent mitogen for mature parenchymal hepatocytes in primary culture, and seems to be a hepatotrophic factor that acts as a trigger for liver regeneration after partial hepatectomy and liver injury. The partial purification and characterization of HGF have been reported. We have demonstrated that pure HGF from rat platelets is a new growth factor effective at concentrations as low as 1 ng ml-1. The effects of HGF and epidermal growth factor (EGF) are additive. The activity of HGF is not species-specific, although it does not stimulate growth in Swiss 3T3 fibroblasts. HGF has a relative molecular mass (Mr) of 82,000 and is a heterodimer composed of a large alpha-subunit of Mr 69,000 and a small beta-subunit of Mr 34,000. Here we report the amino-acid sequence of human HGF determined by complementary DNA cloning and the expression of biologically active human HGF from COS-1 cells transfected with cloned cDNA. The nucleotide sequence of the human HGF cDNA reveals that both alpha- and beta-chains are contained in a single open reading frame coding for a pre-pro precursor protein of 728 amino acids.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for the identity of human scatter factor and human hepatocyte growth factor.

            Scatter factor (SF), a secretory protein of fibroblasts, dissociates and increases the motility of epithelial cells and may be involved in cell migration processes during embryogenesis and tumor progression. Hepatocyte growth factor (HGF), a protein isolated from serum of patients with liver failure, is a potent mitogen for hepatocytes and is thought to play a role in liver regeneration. Here we present structural and functional evidence that human SF and human HGF (and also the human lung fibroblast-derived mitogen) are identical proteins encoded by a single gene, since (i) no major difference could be found by protein sequencing, by cDNA analysis, and by immunological comparison and (ii) SF in fact acts as a hepatocyte growth factor--i.e., stimulates DNA synthesis of activity--i.e., dissociates and induces invasiveness of various epithelial cells. The human SF/HGF gene was localized to chromosome bands 7q11.2-21. These results have important consequences for further studies on the involvement of SF/HGF as a modulator of cellular growth and motility in embryonal, malignant, and regenerative processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hepatocyte growth factor gene therapy of liver cirrhosis in rats.

              Liver cirrhosis is the irreversible end result of fibrous scarring and hepatocellular regeneration, characterized by diffuse disorganization of the normal hepatic structure of regenerative nodules and fibrotic tissue. It is associated with prominent morbidity and mortality, and is induced by many factors, including chronic hepatitis virus infections, alcohol drinking and drug abuse. Hepatocyte growth factor (HGF), originally identified and cloned as a potent mitogen for hepatocytes, shows mitogenic, motogenic and morphogenic activities for a wide variety of cells. Moreover, HGF plays an essential part in the development and regeneration of the liver, and shows anti-apoptotic activity in hepatocytes. In a rat model of lethal liver cirrhosis produced by dimethylnitrosamine administrations, repeated transfections of the human HGF gene into skeletal muscles induced a high plasma level of human as well as enodogenous rat HGF, and tyrosine phosphorylation of the c-Met/HGF receptor. Transduction with the HGF gene also suppressed the increase of transforming growth factor-beta1 (TGF-beta1), which plays an essential part in the progression of liver cirrhosis, inhibited fibrogenesis and hepatocyte apoptosis, and produced the complete resolution of fibrosis in the cirrhotic liver, thereby improving the survival rate of rats with this severe illness. Thus, HGF gene therapy may be potentially useful for the treatment of patients with liver cirrhosis, which is otherwise fatal and untreatable by conventional therapy.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                2005
                2005
                21 June 2005
                : 33
                : 11
                : 3540-3549
                Affiliations
                Department of Dermatology, Faculty of Medicine, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
                Author notes
                *To whom correspondence should be addressed. Tel: +81 3 3815 5411; Fax: +81 3 3814 1503; Email: IN-DER@ 123456h.u-tokyo.ac.jp
                Article
                10.1093/nar/gki648
                1156961
                15972796
                2ea76ebb-6db0-4086-98ed-cf35de09b92e
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 21 February 2005
                : 23 May 2005
                : 23 May 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article