+1 Recommend
1 collections

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)


      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Neurosteroid dehydroepiandrosterone sulfate (DHEAS) has been associated with important brain functions, including neuronal survival, memory, and behavior, showing therapeutic potential in various neuropsychiatric and cognitive disorders. However, the antagonistic effects of DHEAS on γ-amino-butyric acid A receptors and its facilitatory action on glutamatergic neurotransmission might lead to enhanced brain excitability and seizures and thus limit DHEAS therapeutic applications. The aim of this study was to investigate possible age and sex differences in the neuronal excitability of the mice following acute and chronic DHEAS administration.


          DHEAS was administered intraperitoneally in male and female adult and old mice either acutely or repeatedly once daily for 4 weeks in a 10 mg/kg dose. To investigate the potential proconvulsant properties of DHEAS, we studied the effects of acute and chronic DHEAS treatment on picrotoxin-, pentylentetrazole-, and N-methyl-D-aspartate-induced seizures in mice. The effects of acute and chronic DHEAS administration on the locomotor activity, motor coordination, and body weight of the mice were also studied. We also investigated the effects of DHEAS treatment on [ 3H]flunitrazepam binding to the mouse brain membranes.


          DHEAS did not modify the locomotor activity, motor coordination, body weight, and brain [ 3H]flunitrazepam binding of male and female mice. The results failed to demonstrate significant effects of single- and long-term DHEAS treatment on the convulsive susceptibility in both adult and aged mice of both sexes. However, small but significant changes regarding sex differences in the susceptibility to seizures were observed following DHEAS administration to mice.


          Although our findings suggest that DHEAS treatment might be safe for various potential therapeutic applications in adult as well as in old age, they also support subtle interaction of DHEAS with male and female hormonal status, which may underline observed sex differences in the relationship between DHEAS and various health outcomes.

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS).

          DHEA and DHEAS are steroids synthesized in human adrenals, but their function is unclear. In addition to adrenal synthesis, evidence also indicates that DHEA and DHEAS are synthesized in the brain, further suggesting a role of these hormones in brain function and development. Despite intensifying research into the biology of DHEA and DHEAS, many questions concerning their mechanisms of action and their potential involvement in neuropsychiatric illnesses remain unanswered. We review and distill the preclinical and clinical data on DHEA and DHEAS, focusing on (i) biological actions and putative mechanisms of action, (ii) differences in endogenous circulating concentrations in normal subjects and patients with neuropsychiatric diseases, and (iii) the therapeutic potential of DHEA in treating these conditions. Biological actions of DHEA and DHEAS include neuroprotection, neurite growth, and antagonistic effects on oxidants and glucocorticoids. Accumulating data suggest abnormal DHEA and/or DHEAS concentrations in several neuropsychiatric conditions. The evidence that DHEA and DHEAS may be fruitful targets for pharmacotherapy in some conditions is reviewed.
            • Record: found
            • Abstract: found
            • Article: not found

            Neurosteroid modulation of GABAA receptors.

            Certain metabolites of progesterone and deoxycorticosterone are established as potent and selective positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. Upon administration these steroids exhibit clear behavioural effects that include anxiolysis, sedation and analgesia, they are anticonvulsant and at high doses induce a state of general anaesthesia, a profile consistent with an action to enhance neuronal inhibition. Physiologically, peripherally synthesised pregnane steroids derived from endocrine glands such as the adrenals and ovaries function as hormones by crossing the blood brain barrier to influence neuronal signalling. However, the demonstration that certain neurons and glial cells within the central nervous system (CNS) can synthesize these steroids either de novo, or from peripherally derived progesterone, has led to the proposal that these steroids (neurosteroids) can additionally function in a paracrine manner, to locally influence GABAergic transmission. Steroid levels are known to change dynamically, for example in stress and during pregnancy. Given that GABA(A) receptors are ubiquitously expressed throughout the central nervous system, such changes in steroid levels would be predicted to cause a global enhancement of inhibitory neurotransmission throughout the brain, a scenario that would seem incompatible with a physiological role as a selective neuromodulator. Here, we will review emerging evidence that the GABA-modulatory actions of the pregnane steroids are highly selective, with their actions being brain region and indeed neuron dependent. Furthermore, the sensitivity of GABA(A) receptors is not static but can dynamically change. The molecular mechanisms underpinning this neuronal specificity will be discussed with particular emphasis being given to the role of GABA(A) receptor isoforms, protein phosphorylation and local steroid metabolism and synthesis.
              • Record: found
              • Abstract: found
              • Article: not found

              DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology.

              A new understanding of the endocrinology of menopause is that women, at menopause, are not only lacking estrogens resulting from cessation of ovarian activity but have also been progressively deprived for a few years of androgens and some estrogens originating from adrenal DHEA and androstenedione (4-dione). In fact, serum DHEA decreases by about 60% between the maximal levels seen at 30 years of age to the age of menopause. This decreased secretion of DHEA and DHEA-S by the adrenals is responsible for a parallel decrease in androgen and estrogen formation in peripheral tissues by the steroidogenic enzymes specifically expressed in each cell type in individual target tissues. This new field of endocrinology, called intracrinology, describes the local synthesis of androgens and estrogens made locally in each cell of each peripheral tissue from the adrenal precursors DHEA and 4-dione. These androgens and estrogens exert their action in the same cells where their synthesis takes place and they are released from these target cells only after being inactivated. To further understand the effect of DHEA in women, DHEA has been administered in postmenopausal women for 12 months. Such treatment resulted in increased bone formation and higher bone mineral density accompanied by elevated levels of osteocalcin, a marker of bone formation. Vaginal maturation was stimulated, while no effect was observed on the endometrium. Preclinical studies, on the other hand, have shown that, due to its predominant conversion into androgens, DHEA prevents the development and inhibits the growth of dimethylbenz(a)anthracene-induced mammary carcinoma in the rat, a model of breast cancer. DHEA also inhibits the growth of human breast cancer ZR-75-1 xenografts in nude mice. The inhibitory effect of DHEA on breast cancer is due to an androgenic effect of testosterone and dihydrotestosterone made locally from DHEA. When used as replacement therapy, DHEA is free of the potential risk of breast and uterine cancer, while it stimulates bone formation and vaginal maturation and decreases insulin resistance. The combination of DHEA with a fourth generation SERM, such as EM-652 (SCH 57068), a compound having pure and potent antiestrogenic activity in the mammary gland and endometrium, could provide major benefits for women at menopause (inhibition of bone loss and serum cholesterol levels) with the associated major advantages of preventing breast and uterine cancer. A widely used application of intracrinology is the treatment of prostate cancer where the testicles are blocked by an LHRH agonist while the androgens made locally in the prostate from DHEA are blocked by a pure antiandrogen. Such treatment, called combined androgen blockade, has led to the first demonstration of a prolongation of life in prostate cancer. Copyright 2001 Academic Press.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                21 March 2016
                : 10
                : 1201-1215
                [1 ]Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
                [2 ]Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, Belgrade, Serbia
                [3 ]Department of Animal Physiology, Faculty of Science, University of Zagreb
                [4 ]Croatian Institute for Brain Research, Department of Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
                Author notes
                Correspondence: Dubravka Svob Strac, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia, Tel +385 1 457 1268, Fax +385 1 456 1010, Email dsvob@ 123456irb.hr
                © 2016 Svob Strac et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research

                Pharmacology & Pharmaceutical medicine
                dehydroepiandrosterone sulfate,mice,age and sex differences,seizure threshold,motor activity,[3h]flunitrazepam binding


                Comment on this article