13
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Prediction of Single Crosses in the Early Stages of a Maize Hybrid Breeding Pipeline

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single crosses representing the Iowa Stiff Stalk synthetic/non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The performance of single crosses was predicted using parental combining ability and covariance among single crosses. Prediction accuracies were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and genomic prediction method used. The genomic estimated general and specific combining abilities showed an advantage over genomic covariances among single crosses when one or both parents of the single cross were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a hybrid breeding pipeline holds great potential to redesign hybrid breeding and increase its efficiency.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding

          Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping-by-sequencing (GBS) has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS), genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection under a large scale of plant breeding programs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments

            Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations. Although up to 25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction of testcross performance of F2-derived lines using marker effects estimated in the diversity panel was on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing in mean performance. When performance was predicted separately for each breeding population on the basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain yield). These results suggest that prediction resulted mostly from differences in mean performance of the breeding populations and less from the relationship between the training and validation sets or linkage disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.

              Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill-Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker-QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in test crosses.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                19 September 2016
                November 2016
                : 6
                : 11
                : 3443-3453
                Affiliations
                [* ]Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583
                []Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
                Author notes
                [1 ]Corresponding author: Department of Agronomy and Plant Genetics, University of Minnesota, Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, MN 55108. E-mail: lore0149@ 123456umn.edu
                Article
                GGG_031286
                10.1534/g3.116.031286
                5100843
                27646704
                2eb357bc-4e4c-446c-9a35-778ef0c2b77e
                Copyright © 2016 Kadam et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 May 2016
                : 12 August 2016
                Page count
                Figures: 6, Tables: 4, Equations: 7, References: 51, Pages: 11
                Categories
                Genomic Selection

                Genetics
                hybrid breeding,genomic prediction,genotyping by sequencing,general combining ability,specific combining ability,genpred,shared data resources,genomic selection

                Comments

                Comment on this article