12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural and functional relationships in two families of beta-1,4-glycanases.

      European journal of biochemistry / FEBS
      Actinomycetales, enzymology, Amino Acid Sequence, Blotting, Western, Catalysis, Cellulase, chemistry, metabolism, Chromatography, High Pressure Liquid, DNA, Bacterial, genetics, Disulfides, Electrophoresis, Polyacrylamide Gel, Glycoside Hydrolases, Hydrolysis, Kinetics, Molecular Sequence Data, Peptide Mapping, Sequence Alignment, Structure-Activity Relationship, Trichoderma, Trypsin

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CenA and Cex are beta-1,4-glycanases produced by the cellulolytic bacterium Cellulomonas fimi. Both enzymes are composed of two domains and contain six Cys residues. Two disulfide bonds were assigned in both enzymes by peptide analysis of the isolated catalytic domains. A further disulfide bond was deduced in both cellulose-binding domains from the absence of free thiols under denaturing conditions. Corresponding Cys residues are conserved in eight of nine other known C. fimi-type cellulose-binding domains. CenA and Cex belong to families B and F, respectively, in the classification of beta-1,4-glucanases and beta-1,4-xylanases based on similarities in catalytic domain primary structure. Disulfide bonds in the CenA catalytic domain correspond to the two disulfide bonds in the catalytic domain of Trichoderma reesei cellobiohydrolase II (family B) which stabilize loops forming the active-site tunnel. Sequence alignment indicates the probable occurrence of disulfides at equivalent positions in the two other family B enzymes. Partial resequencing of the gene encoding Streptomyces KSM-9 beta-1,4-glucanase CasA (family B) revealed five errors in the original nucleotide sequence analysis. The corrected amino acid sequence contains an Asp residue corresponding to the proposed proton donor in hydrolysis catalysed by cellobiohydrolase II. Cys residues which form disulfide bonds in the Cex catalytic domain are conserved in XynZ of Clostridium thermocellum and Xyn of Cryptococcus albidus but not in the other eight known family F enzymes. Like other members of its family, Cex catalyses xylan hydrolysis. The catalytic efficiency (kcat/Km) for hydrolysis of the heterosidic bond of p-nitrophenyl-beta-D-xylobioside is 14,385 min-1.mM-1 at 25 degrees C; the corresponding kcat/Km for p-nitrophenyl-beta-D-cellobioside hydrolysis is 296 min-1.mM-1.

          Related collections

          Author and article information

          Comments

          Comment on this article